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4.1. Limitations of a Theoretical Treatment

In this chapter we discuss those aspects of the theory of crystal growth
from solution which relate to the growth mechanism. Reference is made
where possible to experiments either on high-temperature or on aqueous
solutions which support the various postulates introduced in the theory. A
recent review of crystal-growth theory has been given by Parker (1970)
and theoretical aspects of crystal growth from solution have also been
reviewed by Bennema (1965), Khamskii (1969), Strickland-Constable
(1968) and Lewis (1974).

Although the number of theoretical publications is quite extensive,
reliable quantitative estimates of the growth rate under specified con-
ditions still cannot be given for growth from solution. All the expressions
for this most important parameter contain factors which cannot be assigned
numerical values based on experiment. Any numerical estimates given
therefore contain values which are crude approximations and so predictions
from the theory are at best reliable only to the order of magnitude.

Another serious limitation mentioned in the previous chapter is that our
present knowledge of the detailed atomic structure of solutions is un-
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4. THEORY OF SOLUTION GROWTH 139

certain and any model of atomistic behaviour in the neighbourhood of a
crystal-solution interface is therefore highly speculative. It may be ex-
pected that the recent advances in understanding of the liquid state will
lead to new experimental and theoretical studies on solutions, and there is
considerable scope for original work. The content of this chapter 1s limited
to an explanation of existing theories in order to formulate the most
complete model of crystal growth from solution which can be given at
present.

4.2. Nucleation

The initial stage of crystallization in a supercooled liquid is the formation

of nuclei of the crystalline phase. Crystal growth, as distinct from nuclea-

tion, is the process by which these nuclei attain macroscopic dimensions.
The most important early study of nucleation was that of Tammann

(1925), who determined the rate of nucleation of complex organic materials.

The form of the curve he obtained is shown in Fig. 4.1, On cooling below
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Fic. 4.1. Temperature dependence of nucleation rate (after Tammann, 1925).

the melting point Ty, the nucleation rate is low until some temperature
Ty is reached at which the nucleation rate increases very rapidly. The
metastable region Ty;—~Tx will depend on such factors as the purity of the
melt and the presence of dust or other particles which may act as centres
for nucleation. The maximum in the nucleation-temperature curve is due
to a slowing down in the kinetics as the temperature is decreased. The fall
in the nucleation rate is particularly marked in viscous melts, and will
become essentially zero at some temperature T'¢. If the melt is cooled to
T'¢ without any crystallization, a glass will be formed. A similar curve to
Fig. 4.1 will apply to solutions and it is possible to cool very viscous
solutions to a temperature at which nucleation does not occur.
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Reviews of nucleation from solution have been given by Hirth and
Pound (1963), Nielsen (1964) and Zettlemoyer (1969). In most systems
used for the growth of crystals, nucleation occurs heterogeneously, that is
at favourable sites within the solution such as the crucible wall or the
surface of the solution. Nucleation theory, however, normally describes
the process of homogeneous nucleation in which the nuclei are considered
to form at random throughout the solution, although estimates of hetero-
geneous nucleation can also be made.

Fluctuations within the supersaturated solution give rise to small
clusters of molecules, known as “embryos”. The probability that an
embryo will grow to form a stable nucleus depends on the change in free
energy associated with its growth or decay. The change in Gibbs free
energy associated with the formation of a spherical embryo of radius 7 is
given by

AG=417?'2'J/—§1T?'3£GV+AGE+AGC (41)

where vy is the interfacial surface energy of the solid phase and 4Gy the
difference in the Gibbs free energy per unit volume between the solid and
liquid phases. The terms AGg and 4G¢ represent respectively the changes
in Gibbs free energy due to the strain energy and to the configurational
entropy change associated with the replacement of internal degrees of
freedom of bulk crystal by rotational and translational degrees of freedom
of isolated embryos (Lothe and Pound, 1962) and these are normally
neglected as a first approximation.

As r increases from zero, the Gibbs free energy increases up to a critical
value r* and then decreases, so that r* represents the minimum radius of a
stable nucleus. The value of r* is given by differentiation of Eqn (4.1) as

‘. 2V
AGy:

r

(4.2)
The form of Eqn (4.2) is unchanged if nuclei of nonspherical shape are
considered but the numerical factor will then differ from 2.

The critical radius r* may be related to the supersaturation in the system
if the free-energy change per unit volume is written as

A== 8 T:%‘; AT (4.3)

where ¢y is the heat of crystallization per unit volume and 4T the magni-
tude of the supercooling at constant pressure. For an ideal solution, the
equilibrium solute concentration is given by n,=n., exp (- $/RT), where
¢ (=4H,) is the molar heat of solution so that ¢ =V ¢y, with Vi the
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molar volume. The relative supersaturation for small values of 47" is

_dn_¢dT
o= 8. RT: (+4)
so that
AG;'=¢-‘-'AT—¢AI _RTo 45)

T VuT V'
Substitution for 4Gy in Eqn (4.2) gives the value of the critical radius as

2yVu
~ RTo

r* (4.6)
so that an increase in supersaturation will decrease 7* and will therefore
favour nucleation.

The value of 4G in Eqn (4.1) for a nucleus of critical size is

16myt 163V

“i._ — ]
4G 34G,* 3R:T?%?

(4.7)
and, if there are n molecules per unit volume, the concentration of nuclei
of critical size 1s

n*=nexp (-AG*/kT). (4.8)

The nucleation rate /, being defined as the number of critical nuclei
generated in unit volume per second, is given by the product of the con-
centration of nuclei of critical size and the rate at which molecules join
such nucle1 as

I=n*z*4*=4nn*z*r*’, 4.9

Here 2* is the frequency of attachment of single molecules to unit area of
nuclei and 4* is the area of a critical nucleus. Substitution for r* and n*
in Eqn (4.9) gives

16mz*y2nl 2 162V 2
from which it is apparent that J will vary rapidly with the supersaturation
o, mainly through the exponential term.

The above treatment follows that given by Volmer and Weber (1926)
who assumed that the probability of growth of the nuclei undergoes a
sharp discontinuity at the critical radius r*. Actually embryos of sub-
critical size will have a finite probability of growing and those of super-
critical size may shrink. A correction for such behaviour was applied by
Becker and Déring (1935), but the resulting expression for [ still varies
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rapidly with the driving force for crystal growth, which is represented
by o.

The dependence on supersaturation of the nucleation rate of potassium
sulphate from aqueous solution has been measured by Mullin and Gaska
(1969) and is shown in Fig. 4.2. This figure shows a comparison between
the nucleation rate and the growth rate over the same supersaturation
range. Nucleation is found to be extremely slow for supersaturations below
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Fi1c. 4.2. Growth and nucleation rates of potassium sulphate (after Mullin and
Gaska, 1969).
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109, and so will not interfere to any appreciable extent with growth on
established crystals in well-stirred solutions at supersaturations much
below this value. The form of the /(e) curve is in quite good agreement
with that of Eqn (4.10) and, in the region of supersaturation above 10°,
the nucleation rate can be approximated by a power law ~ a*.

In the presence of a solid surface or other favourable centre, the
nucleation rate increases because of a reduction in the interfacial free
energy. An expression for the rate of heterogeneous nucleation may be
obtained by replacing 4G* by some lower value, depending on the nature
of the surface and the shape of the embryos. Foreign particles are well
known to provide nucleation centres and the problem of achieving a really
clean system makes truly homogeneous nucleation difhicult to achieve
experimentally.

When the conditions for nucleation are first created in a solution, a
finite period is required before the steady nucleation rate is established.
The rate at which the nucleation rate approaches the steady value 7, can
be described (Dunning, 1955) by a relation

4
=1, 6% ( . !)
The time constant = can be written as

_ Nflek IV;}
= No*kT &P (k_ T )

T (4.11)
where N¢ is the number of molecules in the critical nucleus and Ng* the
number of solute molecules in the layer of solution adjacent to this nucleus.
Cobb and Wallis (1967) have estimated that, in the growth of Al,O, from
high-temperature solution, = can have values from about 0.4 us to 40 us
for undercoolings between 1°C and 10°C. Under normal growth conditions,
therefore, this time dependence should have little effect since under-
coolings are expected to be less than 10°C. Long induction periods prior
to nucleation may, however, be possible in highly viscous solutions.

4.3. Rough and Smooth Interfaces
Once a crystal has nucleated in a solution, the growth process involves the
transport of solute molecules from the solution to some point on the
crystal surface where they become part of that surface. Of critical im-
portance is the nature of the crystal-selution interface and we consider
first the atomic models of the surfaces of crystals.

To the unaided eye, many crystals grown from solution have perfectly
flat faces. The important question which will determine the growth
kinetics of the crystal is whether this flatness persists down to the atomic
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level. Figure 4.3(a) shows a section through an idealized crystal having
atomically flat faces, in which the atoms, all identical, have been repre-
sented as small cubes (this picture clearly differs very strongly from
reality!). Inside the crystal any atom will have six neighbours and, if the
binding energy per atom pair is W3, the energy with which the atom is
bound into the crystal is 3Wg since each bond is shared between two atoms.
For simplicity, only nearest-neighbour interactions are considered. If a
single extra atom is to be added to the crystal, it can form a bond with only
one nearest neighbour and so its binding energy is only Wg. Further atoms
may, of course, from extra bonds with this first additional atom (adatom)
and so constitute a stable cluster, but the small energy with which the first
atom is attached is clearly a major barrier to the growth of this crystal.
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Fic. 4.3. Crystal interfaces. (a) “flat”’, (b) “‘rough”’.

An atomically rough crystal interface will have a cross-section such as
that shown diagrammatically in Fig. 4.3(b). An atom added at the sites
labelled A4 will form bonds with two atoms in the same plane and atoms
arriving at sites labelled B will form bonds with three atoms in this plane.
It is clear that any atom incident on this “rough’ surface will have a much
greater probability of becoming part of that surface than in the case of the
smooth surface. Note that this probability will depend on the binding
energy Wg, 2Wg, 3Wp, etc., not linearly but through terms exp (Wg/kT),
exp (2ZWpg/kT) etc., where T is the interface temperature and & is Boltz-
mann’s constant.

From this very simple argument, we may conclude that atomically rough
surfaces have a much higher rate of growth than atomically flat surfaces.
Rough surfaces tend to remain rough as long as adatoms which become
attached at sites such as those labelled 4 in Fig. 4.3 create new “‘corners”
for the attachment of subsequent atoms. However, on a smooth surface,
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the rate-limiting step will be the addition of a new atom or group of atoms
on that surface, since this group will form a layer with a “rough” edge at
which atoms can be integrated relatively easily until the layer covers the
whole crystal face and the surface is again smooth.

4.4. Models of Surface Roughness

Several calculations have been performed of the degree of roughness of
a crystal surface and its variation with temperature. Burton and Cabrera
(1949) used the Onsager (1944) solution of the Ising model to treat the
behaviour of an array of atoms on the surface of the crystal. If U is the
surface potential energy per atom of the actual surface and U, that of a
perfectly flat surface, the surface roughness is defined as S,=(U - U,)/U,.
The parameter S, will clearly be zero for a perfectly flat surface and so a
non-zero value of S, is a measure of the degree of roughness. A simple
cubic array (such as that of Fig. 4.3) is treated and is assumed to be
perfectly flat at absolute zero.

The energy required to remove an atom from the perfectly flat surface
and to place it on a site in the next layer (previously empty) is 21y since
four bonds must be broken. For temperatures well below a critical value
T., S,=4exp(-2Wg/kT) in which the factor exp (-2Wpg/kT) is the
probability of excitation of a single atom from a full to an empty layer on
the surface. The variation of this function with temperature is shown in
Fig. 4.4(a). It will be seen that the surface may be assumed flat provided
that 7" is much less than 0.1 Wg/k. More recent treatments have predicted
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Fi:. 4.4. (a) Temperature dependence of surface roughness (after Burton and
Cabrera, 1949). (b) Free energy change with fractional occupation of layer (after
Jackson, 1958).
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curves which differ markedly from that of Fig. 4.4(a), but the trend is
always from S,=0 at low temperatures with the roughness increasing
rapidly as 7' is raised above some value in the region of 0.2 Wpg/k. The
temperature 7, at which the surface in contact with the vapour becomes
“ideally rough” is given by Wg/kln (2V/2-1)-! and is normally much
higher than the melting point of the solid. For solid-liquid interfaces Wp
is lower and the surface may be rough at or below the melting point.

Jackson (1958) used a rather different approach which takes into account
the nature of the medium in contact with the crystal surface. His approxi-
mation involves a calculation of the change in the Gibbs free energy as
atoms are added to the surface. The results are shown in graphical form in
Fig. 4.4(b) as a plot of the change in free energy per atom versus the
fraction x of atoms occupying a layer on the surface. The parameter
a=(L|RT)f,, where L is the latent heat of the process, and f(<1) is a
crystallographic factor representing the fraction of all first neighbours
lying in a plane parallel to the face considered. It may be seen that, for
o< 2, the free energy is a minimum when x=0.5, that is when the surface
is rough. For x =2, the free energy is a minimum when x has a value close
to 0 or 1, that is when the surface is almost smooth. For a {100} plane on a
simple cubic lattice, f, =2/3 and the critical condition « =2 corresponds,
for growth from a pure melt, to a melting temperature 7'y = L/3k.

A similar problem was treated by Temkin (1966), who described the
behaviour of the surface in terms of a dimensionless parameter y' =4W/kT,
where W is the surface energy per atom. A flat surface corresponds to a
high value of y". While the Temkin theory is related to that of Jackson, it
is more general in that the number of surface layers considered is unlimited.

All the theoretical treatments such as those described suffer from the
necessity to make some approximation since a rigorous solution is not
possible. The most common approximations are the restriction of inter-
actions to nearest neighbours and the so-called Bragg-Williams approxi-
mation which assumes long-range order and averages the interaction
between atoms so any effects of small clusters of atoms on each other are
not taken into account. Recently attempts have been made to simulate a
crystal surface by computer and some results of such simulations have
been reported by Binsbergen (1972) and by Bennema and Gilmer (1972).
The relatively large size of the simulated surface area (~ 40 x40 lattice
units) gives more reliable results of the static surface properties like surface
roughness than the presently available analytical approaches. Thus
computer simulation offers considerable promise.

Hartman and Perdok (1955) proposed a treatment of crystal surfaces
based on considerations of the chemical bonding within the crystal. They
define periodic bond chains (PBC’s) as chains running through the crystal
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in certain directions which contain the strongest chemical bonds. The flat
(F) crystal faces are those which are parallel to at least two of these chains.
Stepped or S faces are those parallel to one PBC and rough or kinked (K)
faces are not parallel to any PBC. This theory gives good qualitative results
for the crystal morphology of several materials but it cannot be used for
quantitative work such as calculations of surface energy.

The observation of smooth, highly reflecting facets on most crystals
grown from solutions suggests that these are the F faces. If a small crystal
is nucleated with an approximately spherical shape in a supersaturated
solution, the rough faces will have more sites available for the attachment
of solute molecules and will therefore grow more rapidly. As growth
proceeds, these rapidly growing faces tend to disappear and the crystal
will eventually be bounded by the relatively slow-growing ‘“‘habit” faces.
The sequence of formation of the habit faces is illustrated in Fig. 4.5.
These slow-growing faces, which form the boundaries of crystals grown
under stable conditions, are of course not perfectly flat on the atomic scale.
They contain vacancies and adatoms (note that the minima in Fig. 4.4(b)
for x~2 do not occur exactly at x =0 or 1), but their important property
is that growth can only occur at certain sites where a new layer is nucleated.,

(a) (b)

(c) (d)

Fii. 4.5, Elimination of more rapidly growing faces during growth.
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Such surfaces are referred to as “‘singular’” and correspond to a minimum
in the y(#) plot which will be discussed in Chapter 5. The mechanisms
by which surface nucleation may occur are considered in Section 4.7. It
may, however, be noted that the nucleation sites will often be lattice
defects, although in principle growth by random two-dimensional
nucleation is possible on a singular surface.

Very few observations have been reported of rough surfaces on crystals
grown from high-temperature solutions. E. A. D. White (unpublished
work) has noted on ruby crystals grown from solution in PbF, small
facets which appear to be rough, but such facets are very rare and it is
probable that they will be observed only when growth is terminated at a
transient stage following some change in the experimental conditions
which is tending to produce a habit change. Another cause of surface
roughness was discussed by Scheel and Elwell (1973b) who assume a fast,
unstable growth rate at the end of a crystal-growth experiment due to fast
cooling when the furnace is shut off or the crucible is removed so that the
remaining solution may be poured out.

The surface roughness of crystals growing in high-temperature solutions
will increase with temperature and they may exhibit changes in growth
rate or morphology on this account as the growth temperature is raised
towards the melting point. However, we shall assume in the subsequent
discussion that the faces of crystals grown by this method are atomically
flat and the theory will be developed with the assumption that some
surface nucleation process is necessary. The experimental evidence for
this assumption will be discussed in Sections 4.11 to 4.13.

4.5. Stages in Growth from Solution

As first stressed by Kossel (1927), growth on a crystal having a flat inter-
face requires some mechanism by which atoms (or the appropriate growth
units)t will be integrated into the crystal more readily than on the remain-
ing surface. This integration may be at the edge of a layer of monatomic
thickness which spreads laterally across the crystal surface. Integration of
atoms into the crystal will occur most readily at vacant sites or “kinks”
along the edge of this layer since an atom entering such a kink will be able
to form nearest-neighbour bonds with three atoms in the crystal. The
meaning of the terms “step’ and “kink” is illustrated in the diagram of a
crystal surface shown in Fig. 4.6.

+ Glasner (1973) has proposed that supersaturated aqueous solutions contain
crystalline aggregates some 50 to 100 A in diameter and that crystallization involves
the regular arrangement of such aggregates on the crystal surface layers of unit cell
height (see Section 4.12) but its confirmation would revolutionize the basic concepts
of growth from solutions.
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vacancy
P d

Fic. 4.6. Idealized model of *““flat” crystal surface.

If a crystal which has a stepped interface is in contact with a super-
saturated solution, the process of growth can be considered to occur in the
following stages:

(1) Transport of solute to the neighbourhood of the crystal surface.

(i1) Diffusion through a boundary layer, adjacent to the surface, in
which a gradient in the solute concentration exists because of
depletion of material at the crystal-solution interface.

(ii1) Adsorption on the crystal surface.

(iv) Diffusion over the surface.

(v) Attachment to a step.

(vi) Diffusion along the step.

(vii) Integration into the crystal at a kink.

The sequence (i)—(vii) is illustrated in Fig. 4.7(a). The detailed nature
of the solute particles is not known but it is likely that ions of opposite sign
will tend to diffuse together because of their electrostatic attraction. It is
certain that some interaction between solute and solvent particles exists in
the solution. Such interactions are described by the term solvation which is
used here to include all forms of interaction. For simplicity the solute
particles of Fig. 4.7(a) have been shown to be surrounded in the solution
by six particles of the solvent forming a regular octahedron. Solvation
may reduce the tendency of solute particles to form clusters near the
crystal surface, but the importance of clustering in vapour growth has been
demonstrated by Lydtin (1970) and there is a need for experiments aimed
at understanding the nature of the solute particles near the crystal
interface.

Stages (ii1), (v) and (vii) are accompanied by partial desolvation and there
will be a new flow of solvent away from the growing crystal. The solute
particles may become desorbed at any stage after (ii1) and the desorption

process has been represented on the diagram by (iv)*. The solute does not
F
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ENERGY

(vi)

(vii)
(b)
Fic. 4.7, (a) Stages in crystal growth from solution; (b) corresponding energy
changes.

fully become part of the crystal until the heat of crystallization has been
liberated and the desolvation process is complete.

All the stages in the growth process can be represented by relaxation
times or the equivalent energy barriers and the potential energy profile
for the growth process is shown schematically in Fig. 4.7(b). A similar
diagram was given by Conway and Bockris (1958) for electro-crystalliza-
tion and by Bennema (1967). An alternative representation would be to
consider the various processes as impedances but the electrical analogue
of solution growth has not been pursued, presumably because the im-
pedances are distributed rather than discrete.
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It should be noted that some of the processes (i)-(vii) occur in series but
that some occur in parallel so that not all the stages are necessarily involved
in the growth of a chosen material. For example, solute particles may
diffuse directly to a kink site by surface migration and so eliminate the
necessity for (v) and (vi). Some of the processes will normally occur so
quickly (in series) and some so slowly (in parallel) that they may be
neglected in comparison with the other stages. In practical crystal growth
it is most important to know which process determines the rate of growth
and we shall be particularly concerned in this Chapter and in Chapter 6
with the problem of deciding which step is likely to be rate-determining.

In order to discuss the growth process in more detail, it is convenient to
take stages (iii)—(vii) together as the interface kinetic stage. It is also
necessary to consider the origin of the steps, which has been neglected in
the previous discussion. The transport process (stage (i)) by which solute
is transferred to the crystal is crucial to the growth of good quality crystals
but we defer discussion of this process until Chapter 6, in which the use
of the theory in the design of crystal-growth experiments is considered.
Stage (i), diffusion through the boundary layer, is first considered
separately for the case in which the interface kinetics are not rate de-
termining. The interface kinetic stage (iii)-(vii) is considered separately
and the general case where stages (i) and (1ii)-(iv) are combined is also
treated.

4.6. The Boundary Layer
The concept of a boundary or “unstirred” layer was introduced by Noyes
and Whitney (1897) and its importance in crystal growth from solution
was stressed by Nernst (1904). There is often confusion between the
solute diffusion boundary layer, which was introduced in the previous
section, and the “hydrodynamic” boundary layer. The latter is a layer of
solution which is considered stagnant because of adhesion to the crystal
surface while the remainder of the solution is flowing past this surface (see
Wilcox, 1969). A simple relation exists between the two layer thicknesses,
and the layer referred to in the remainder of the book will be the solute
diffusion boundary layer.

A boundary layer, whether diffusion or hydrodynamic, is a simplified
concept in any system fluctuating with time. Its use in diffusion-limited
growth can be illustrated with reference to a plane crystal surface growing
uniformly in a supersaturated solution. The rate of transport of solute per
unit area in the = direction, normal to this surface, is given by Fick’s law
as

dm D on

T (+:12)
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and the linear rate of growth of the crystal if its surface at 2=0 is corre-
spondingly, with n, the solute concentration at 2 =0,

D (on
S vl

where p is the density of the crystal. The solute concentration at the
interface will approximate to the equilibrium value provided that the
kinetic process is extremely rapid compared with the volume diffusion.
This condition was originally assumed by Nernst (1904). If the solute
gradient is uniform over the boundary layer, substitution for (9n/dz) in
Eqn (4.13) gives, if p =n,,

D (n:m n ﬂe)
~Sacnd | (4.14)

v

This equation may be used to define the width 8 of the diffusion boundary
layer.

The existence of a boundary layer has been confirmed using optical
interference methods by Berg (1938), Bunn (1949) and several other
investigators, using aqueous solutions. The solute concentration is de-
termined from the refractive index of the solution and contours of equal
concentration around a growing crystal have the form shown in Fig. 4.8.

CRYSTAL

Lines of
equal concentration

Fi1c. 4.8. Concentration contours around a growing crystal.

The supersaturation is seen to be highest at the corners and lowest at the
centre of the faces. Such a variation of the supersaturation across the face
is to be expected for a polyhedral crystal and the experimental results have
been explained by Seeger (1953) and by Boscher (1965), who solved the
diffusion equation in three dimensions using an electrical analogue.

+ The diffusion coefficient D is an effective value, since both positive and

negative ions must diffuse and the requirement of local electrical neutrality must
be satisfied.
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F1c. 4.9. Solute distribution adjacent to growing KBr crystal.

The fact that crystals normally grow uniformly in spite of this variation
in supersaturation has been explained by Frank (1958a), who supposed
that the rate of growth of any tace is determined by the local value of the
supersaturation at one point at which the dominant growth centre for the
whole face is located. However, if solute is deposited too rapidly from the
solution, it may be expected that faster growth will occur at the corners
or edges of the crystal where the supersaturation is highest, and this is
confirmed by experiment (Chernov, 1963; Lefever and Chase, 1962). The
experimental observations of variations in solute concentration across the
face of the crystal confirm the approximate nature of equations such as
(4.14). The variation of the solute concentration normal to a crystal surface
in aqueous solution has been measured by Goldsztaub, Itti and Mussard
(1970) and their result is shown in Fig. 4.9. The equation of solute flow in
one dimension is normally written in the form

o*n & on _on
R T
The first term represents the diffusional flow, the second grewth-induced
convection (Wilcox, 1972) and the third takes into account the time
dependence of the solute concentration. In the steady state, dn/dt =0 and
so, if u is negligible,

*n : on

—-=0 1.e. R = const="n
dz? 0z d

D (4.15)

—ﬂ!.
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as in Eqn (4.14). The non-linearity in Fig. 4.9 is attributed to convection
in the cell used by Goldsztaub et al. If the convection term is negligible,
the time-dependent solution of Eqn (4.15) has the form

n(z, 1)=n, + (n,, - n,) erf (RD;)W) ) (4.16)
The value of the boundary-layer thickness in this case will be time-
dependent and integration of the growth rate over the period of the ex-
periment is necessary if a comparison between experiment and theory is
to be made.

The problem of the boundary layer was considered by Carlson (1958)
who assumed laminar flow of the solution over a face of the crystal. He
found that, for uniform growth of the crystal face, the concentration of
solute should decrease with distance from the leading edge. As in diffusional
flow, therefore, a non-uniform supersaturation over the surface is expected.
Carlson derived an expression for the rate of growth of the crystal and his
results give for the solute diffusion boundary-laver thickness (taking into
account hydrodynamics)

1/3 u 1'21—1 .
5= {}.463( ”) (P-‘") . 4.17
{ psn D nl /) ) (+17)

Here » is the viscosity and p,, the density of the solution, u the flow
velocity and / the length of the crystal face considered. A similar ex-
pression was used by Bennema (1967) to calculate the boundary-layer
thickness and the results were found to be in agreement with his experi-
mental values. If y=10cP, p,,=5gem3, D=10"*cm?s~ !, u=0.1 cms™!
and /=5 mm, the value of 8 is calculated to be 0.055 cm and this value
is probably correct to the order of magnitude for diffusion-controlled
growth.

The variation of 3 with the solution flow rate ¥ may be used to explain
the change in crystal-growth rate at high supersaturation when the flow
rate is varied. The usual form of the variation of the crystal-growth rate in
aqueous solutions with the solution flow rate is shown in Fig. 4.10. The
increase in growth rate with flow rate continues until some limiting rate is
reached where the growth rate becomes controlled by the interface kinetic
process. Carlson’s theory predicts that & should vary as #~''%, and so ¢
should depend on u''2. This result is in reasonable agreement with the
experiments of Hixson and Knox (1951), who report veu®% and of
Mullin and Garside (1967), whose results are described by a relation
r‘nx“-ﬂ.ﬂﬁ.

A similar variation in the growth rate is observed when a crystal is
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Fic. 4.10. Variation in linear growth rate with solution flow rate.

rotated in solution. The boundary-layer thickness in this case is given by
Burton, Prim and Slichter (1953) as

8 o 223, Ni8 g~ 112 (4.18)

where w is the angular velocity of rotation of the crystal and v the kinematic
viscosity of the solution. A linear dependence of the growth rate ¢ on w''?
is found for the growth of sodium thiosulphate using the data of Coulson
and Richardson (1956), for low values of w. Laudise, Linares and Dearborn
(1962) measured the variation of the growth rate of yttrium iron garnet
from solution in BaO—B,0; with crystal rotation rate. They found an
increase in ¢ for values of w up to about 50 r.p.m., beyond which the
growth rate was independent of the rotation rate. The data are insufficient
to confirm an w''? dependence at low rotation rates.

In general the observed rate of growth of a crystal will depend partly on
boundary-layer diffusion and partly on the interface kinetics. Brice (1967a)
has shown how the role of the boundary layer may be taken into account
in order to deduce the form of the interface kinetic law. His approach is
based on that of Berthoud (1912) and Valeton (1924). The solute con-
centration at the interface 1s taken as n; and the kinetic law is assumed to
have the form

=AM, —n )" (4.19)
where A and m are independent of the solute concentration. The growth
law may also be expressed in terms of the diffusional flow by a modification
of Eqn (4.14). In this case
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oD (M —n) (4.20)
P
Elimination of 7, between Eqns (4.19) and (4.20) gives
v 1/m 'L‘PS
O e

If 8 varies as w12 or as u~'/2, a plot of v'/™ versus vw=1'2 or vu~-1/2 at
constant supersaturation should be linear and such plots were successfully
used by Brice to obtain the power m of the kinetic law. This procedure
does not, however, give satisfactory results in all cases, presumably because
of the simplifications introduced in assuming Eqns (4.19) and (4.20).

The variation of growth rate with boundary-layer thickness as a function
of supersaturation was discussed by Scheel and Elwell (1973a) and will be
treated in Chapter 6. For low and medium supersaturation Eqn (4.21)
will approximately hold. However, at high supersaturation and sufficient
stirring a maximum (stable) growth rate is reached which is a constant for
a given solute-solvent system. Depending on n,, this maximum growth
rate is determined either by surface kinetics or by heat flow.

4.7. Generation of Surface Steps

We now consider interface kinetic mechanisms in detail, treating in par-
ticular crystal surfaces which are “flat” rather than “rough’. The critical
step in the growth of crystals having perfect or nearly perfect surfaces is
the formation of a cluster of atoms sufficiently large to constitute a stable
nucleus which will grow to form a new layer. The classical theory of
crystal growth is analogous to the nucleation theory described in Section
4.2, with the exception that nucleation occurs on a crystal surface. In such
a “two-dimensional” nucleation theory it is convenient to treat a cylindrical
embryo of radius r and of height a corresponding to one growth unit (e.g.
an atom or molecule). The change in Gibbs free energy on formation of
such an embryo is

AG(r)=2nry, - mr%adG, (4.22a)

where y, is the edge energy per unit length of the nucleus. The term 4G,
of Eqn (4.1) is included (see Lewis, 1974) by putting

n(r)=nyexp (- A4G|kT) (4.22b)

where n, is the density of available sites,

Alternatively the free energy can be expressed in terms of the energy
per growth unit (for simplicity, we shall use the term ‘“‘molecule’) y,, on
the edge of the cylindrical nucleus. If the length of the molecule is also a,
vm ~ay,and so
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~ 27Tr m w
4G~ _nr204G,, (4.23)
a
and differentiation gives the radius of the critical nucleus as

g }_/Hl -
"= adG (4.24a)
and the corresponding value of 4G is
*_ TV 24b
45 a*4G,’ (4.24b)
Substitution for 4G, from Eqn (4.5) gives

r * =_}_’m _K.'l_!

Y a@*RTo’

A more familiar form of this equation is obtained by putting V=N, a?,
where N4 is Avogadro’s number and the molecule is assumed to be a cube

of side a. This gives

%_Ym@
Tt = (4.25a)
and correspondingly
AG* =y, *{kTo. s
The number * of molecules in a critical nucleus is
x_T*2_ l*"_)s
:—az—g%. (4.25¢)

The rate of surface nucleation, and hence of crystal growth, depends by
analogy with Eqn (4.8) on exp ( - 4G*/kT), and it is instructive to estimate
the order of magnitude of this factor as a function of the supersaturation.
The energy y,, is of the order of the binding energy W, introduced in
Section 4.3, that is y,, ~¢,,/6, where Wg is the binding energy, ¢,, is the
heat of solution per molecule. (Strictly, the value of y,, will be higher on
low energy planes.) Using a value for ¢ =72 k] mole~! as found for nickel
ferrite in barium borate (Elwell, Neate and Smith, 1969) so that
¢, ~2x 10720 ] molecule-?, then, with 7T'=1500 K, 4, /kT~1 so that
AG* ~xo. The term exp (- G*/kT) varies from 3 x 10-3 for ¢=0.5 and
~10-1% for 6=0.1 to ~10-'® for ¢=0.01. Growth by two-dimensional
nucleation therefore has a high probability except at very low super-
saturation values. In the system referred to above, growth was observed
experimentally at relative supersaturations down to about 19,
F2
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A discrepancy between observed growth rates from the vapour at
supersaturations below 19, and the prediction from two-dimensional
nucleation theory of negligible growth below 509, supersaturation (for
&,./kT ~12) led Frank (1949) to propose that dislocations having a screw
component act as a continuous source of layers on the surface of a crystal.
The presence of the step associated with such a dislocation removes the
need for surface nucleation.

Figure 4.11(a) shows the face of a crystal with a screw dislocation
emerging at P. Molecules are readily integrated into the crystal at the step
PQ, which is of approximately monomolecular height, and the initial
growth is normal to the step as indicated by the arrow. The emergence of
the screw dislocation at P fixes this point so that the rate of movement ot

(a)

Fic. 4.11. Development of a spiral.

the layer is here zero. Elsewhere the step moves in such a way that its
linear velocity is constant and angular velocity decreases with the distance
from P. As the crystal grows, the step therefore winds itself up into a spiral
with its centre at P. The development of the spiral is illustrated in Figs
4.11(a)~(d). In this sequence the face considered grows normal to itself
at a linear rate ©. T'he area of the face increases at the same time, due to a
similar growth process on the other surfaces of the crystal. The spiral will
continue to wind itself up until the separation of adjacent layers at the
centre is of the order of the radius r_* of the critical nucleus.

The presence of growth spirals has now been established on a large
variety of crystals. These include natural crystals (Sunagawa, 1960) and
synthetic crystals grown from the vapour phase (Verma, 1953) and from



Fii. 4.12. Growth spiral on a rare-carth orthoferrite crystal (after Tolksdort and
Welz, 1972).
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aqueous solution (Forty, 1951). Figure 4.12 shows a particularly beautiful
example of a growth spiral on an orthoferrite crystal grown from high-
temperature solution, observed by Tolksdorf and Welz (1972). The
presence of such spirals provides evidence for the validity of Frank’s screw-
dislocation model, although the height of the steps in Fig. 4.12 is 50-150 A
rather than of monomolecular dimensions as envisaged by Frank.

Lewis (1974), in a review of two-dimensional nucleation, has pointed
out that the importance of growth in solution by this mechanism has been
underestimated, certainly for medium and high supersaturation. As is
clear from Eqn (4.25), the probability of 2-D nucleation will depend on
the factor ¢,,/kT, which will be lower for solution growth than for growth
from the vapour. Bennema et al. (1972) have confirmed by computer
simulation experiments that a mechanism of growth by 2-D nucleation
on growing two-dimensional nuclei can describe some experimental
growth-rate data better than the screw-dislocation theory.

4.8. The Theory of Burton, Cabrera and Frank
Screw dislocations are important because they can provide a continuous
source of steps which can propagate across the surface of the crystal. In
order to construct a theory which will predict values for the rate of growth
of the crystal, it is necessary to calculate the rate at which molecules will
arrive at the steps of the spiral. A theory of crystal growth including the
mechanism of step generation and of transport into the step was given by
Burton, Cabrera and Frank (1951) and this BCF paper has assumed great
importance since much of the content will apply to any theory of crystal
growth. The theory given here was originally proposed for growth from
the vapour phase but its applicability to solution growth has been strongly
advocated by Bennema (1965, 1967) and by Bennema and Gilmer (1973)
whose treatment we follow.

The velocity of growth will depend on the shape of the growth spiral,
for which an exact expression has not been developed. BCF used the
equation for an Archimedian spiral

r=2r% (4.26)

where 7 and 0 are the coordinates of any point on the spiral as indicated in
Fig. 4.13. Equation (4.26) should be a good approximation to the behaviour
of a real spiral, for positions not too close to the centre. The distance y,
between the steps of the spiral will thus be

Vo=2r*(0+27m) — 0=4mr*.

A more rigorous approach by Cabrera and Levine (1956) showed that a
better approximation is given by
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(4.27)

and this value will be used in the subsequent development.

The second part of the BCF theory is concerned with the transport of
molecules from the bulk of the solution to kinks in the steps of the spiral.
It is assumed that the surface-diffusion coefficient is independent of the
local concentration and this, together with the neglect of surface vacancies,
is the main assumption of the theory. As mentioned earlier, the nature of

Yo

Fic. 4.13. Growth spiral.

solute particles on the crystal surface is not known but, if local electrical
neutrality is assumed, it is possible to define a single relaxation time for
each stage of the surface transport process in the same way that an effective
volume-diffusion coefficient can be specified for the flow of ions of opposite
charge.

The steps in the spiral are assumed to move negligibly slowly compared
with the rate of migration of molecules on the surface. This assumption is
justified since the rate at which the step moves is governed by the rate of
arrival of diffusing molecules. For simplicity, the distance from the spiral
centre is taken to be so large that curvature of the steps may be neglected.
The net flux of particles into a strip of width dy on the surface in the region
of a step will depend upon the flux j, from the solution to the surface and
on the flux j, across the surface into the step due to the concentration
gradient created by integration of molecules into the surface at the step.
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Fii. 4.14. Flow of solute to a step,

These particle fluxes are indicated in Fig. 4.14, In the steady state the two
fluxes will balance and so, for unit length in the v direction,

dily) .

S I | 4.28
dy (+.28)

The surface flux j, can be expressed in terms of the surface-diffusion

coefficient D_ and the local surface concentration n, as

dn,
dy

do.

J.=-D, se a‘

- D, -Ej— (n,o.+n,)=-D,n (4.29)
dy

where u,, is the equilibrium concentration at the surface far from a step

and o, the local value of the relative supersaturation. It is convenient to

introduce a variable o as the difference between the surface supersaturation

o, and the supersaturation very far from a step, which is governed by the

solute concentration in the bulk of the solution. Thus

=a-0o(v) (4.30)

and, since o is independent of v,

d dys
.=D,n, - (o-0)=D,n,, —. 4.31
Jo=D;n, d;.-( W) =D, “ dy (4.31)
The flux j, can be written as the difference between the flux leaving the
surface n(y)/Taeaas and that moving towards the surface n,,/7geqs Where
Tdeads 18 the relaxation time governing deadsorption of solute from the
surface (shown as (iv)* in Fig. 4.7). Thus



4. THEORY OF SOLUTION GROWTH !()3

_on, — N l!’M.(cr -a,) _n, i ‘ (4.32)
Tdeads Tdeads Tdeads
On substitution of Eqns (4.31) and (4.32) into Eqn (4.28), the differential
equation of solute transport becomes
dz
D\ Tdeads ]_L!: 11;'1
dy?

or
p 2 d3)

dy?

) (4.33)

where v, (D, Taeaqs) is the mean distance travelled by solute molecules
on the surface. Equation (4.33) has a general solution

dg=Aexp (/y)+Bexp(-y) (4.34)

and it is necessary to introduce boundary conditions to obtain values for
A and B. The most probable situation is that v, ~.x,, where v, 1s the average
distance between kinks in a step. For a set of equidistant steps of scparation
v, and with the origin of v chosen to be mid-way between the steps, the
boundary condition may be L\:prusul by putting the value of ¢ at a step
as Bo, so that iy =Bo when v = =}y, Then, from Eqn (4.34), for v +1v,,
$p=PBa— Aexp(y,/2y)+Bexp(-y,/2v) and for v=-ly, - fo
Aexp (=v,/2v)+ Bexp (v./2y,) from which 4= B, and substitution in
terms of Bo in Eqn (4.34) gives
_gq_wah (v/v.) (4.35)
cosh (v,/2y,)

If x, v, it is necessary to introduce an extra factor ¢, into Eqn (4.35) to
take into account the non-planar diffusion fields around the kinks.

From Eqn (4.31), the flux of particles towards a step may now be
written as
dy D.n,PBo sinh (y/y)

y 36
“dy  y, cosh (vl 2.1 . (+.36)

Jo=D.n,
If n,, is measured in gem 2, j, represents the fluxingem 's! towards a
step either of monomolecular or larger height. The linear rate of advance
of the step 7, is obtained by multiplying j, by the area 1/pa per unit mass
of the crystal so that, for a step of monatomic height,
1 _2D;n. Bo

tanh 2* . (4.37)

Upe=2]
= pa  apy. 2y,

iy — val?)

T'he factor 2 is introduced since molecules enter the step from two sides.
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In order to calculate the linear growth rate v of the crystal (in the 2
direction), it is necessary to multiply the flux of steps by the height of a
step. For a step separation y,, the number of steps per unit length is 1]y,
and so the flux of steps in the y direction will be v,,/y,. If the step height is
a, the rate of growth will then be

v, a
v= 4,38
Yo ( )

or, on substituting for v, and y, from Eqns (4.37) and (4.27)

__2Dyn,, Bo®kT Yo
= W anh 23—:"; 7 (4.39)
If a parameter o, is defined as
| |
_%o_9Syma |
i o=ge=Tgel | (4.40)
Eqn (4.39) may be rewritten in the form
I 2 2
- s B2 i B ™ | (4.41)
¥ o - o

The variation of growth rate with supersaturation thus depends on two
parameters: C(=D,n,. B/y2p), which determines the absolute value of ¢,
and o, which determines the shape of the (o) curve. For low values of
o(0<0,) Eqn (4.41) may be approximated by

__Ca?(exp (20,/a) = 1) _Co?
= (exp Cayjo)+ 1) o

(4.42a)

while for o .0,

;2 ORI+ Qo)+ )~ 1

T oy (1+(20y)o)+..)+1 =t (1:425)
The BCF theory therefore predicts a quadratic ©(o) curve for low values
of the supersaturation with a gradual transition to a linear law as the
supersaturation is increased above a critical value o,. A relatively large
value of o, for a given material should result in a quadratic growth curve
while a linear v(o) plot should be expected according to the above theory
if o, is low.
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Cabrera and Coleman (1963) have pointed out that at higher super-
saturations, the surface supersaturation near the centre of the spiral may be
lower than o because of the depletion caused by surface diffusion to that
portion of the spiral where the step spacing y, is small. The result is that
y, decreases more slowly with o than predicted by Eqn (4.27). This “back
stress” effect makes the transition from a quadratic to a linear law occur at
higher values of o than predicted by Eqn (4.42) and a perfectly linear law
is unlikely over any wide range of supersaturation values.

If a number of screw dislocations emerge at the growth centre the form
of the spiral will be more complex than that shown in Fig. 4.13. In order
to take into account the effect of cooperation between a number of inter-
acting spirals, BCF introduced a factor € such that

19r,* _19y,.a

Yo e T ekTo (h43)
Equation (4.41) then becomes
ot
v Lr tanh 7. (+.44)
a, €0

The factor € can be quite complex and some examples of cooperating
dislocations will be discussed in Section 4.12.

BCF Theory of Solution Growth
As mentioned earlier, the BCF theory was derived for growth from the
vapour. In the case of solution growth, the molecules were assumed to
enter the kinks directly rather than by entering an adsorption layer and
undergoing surface diffusion. The justification for this assumption was
that the coefficient of volume diffusion (~ 10-% cm? s~!) is normally much
higher than the coefficient of surface diffusion (~ 10-® cm?s-!) for
molecules in solution so that any diffusion in a direction parallel to the
crystal surface might be expected to occur in the boundary layer. If the
rate of flow of solute molecules to the kinks is governed by diffusion
through the boundary layer, the net flux reaching the steps, which governs
their rate of advance ¢, will be proportional to the supersaturation o.
With 1/y,«0o according to Eqn (4.27), the growth rate v will again vary
as o? since v =7, afy, [Eqn (4.38)]. BCF considered solute flow towards a
kink in a hemispherical diffusion field and obtained an expression for the
step velocity

- Dn, 2no [1 " 2ma(3 - y,) i 2a % (3:'?)]_1_ (4.45)

px, X Ve Xy X,

For low supersaturations y, is large and the third term in the bracket is the
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dominant one. In this case, v,,xo and a quadratic law is predicted using
Eqn (4.38) since y,x1/o. However, at high supersaturations the second
term is dominant since y, becomes small. In the latter case

o~ Dneoy,
*~ pa(d - y,)

and, neglecting y, in comparison with 3, Eqn (4.38) gives the growth rate
as

Dn,.o
=

pd

This case 1s exactly the same volume-diffusion limited situation which
was considered by Nernst and described by Eqn (4.14).

4.9. Should Surface Diffusion be Included?

The difference between Bennema’s treatment of solution growth and the
BCF solution-growth theory rests upon whether or not surface diffusion
plays an important role in the growth process. It is generally accepted that
the rate of volume diffusion exceeds that of surface diffusion, but the
effective area of the kink sites is small compared with the total area of the
crystal face and this factor will favour a mechanism in which volume
diffusion to a random point on the surface is followed by surface diffusion
to a kink.

A meaningful numerical comparison between the growth rates calculated
using Eqns (4.44) and (4.45) is difficult because many of the parameters
in these equations are not known even to the order of magnitude. An
attempted comparison is given in Fig. 4.15. In this example it has been
assumed that D=10-3cm?s-!, n,=lgem=3, p=5gcem-3, a=4x10-% cm
and y,,=2x10-2 J/molecule ~kT so that, from Eqn (4.27), v,~10a/o.
The mean separation between kinks x, is given by BCF as

X, = g exp (WalkT) (4.46)

and, with the binding energy Wg ~y,, ~ kT for 7'=1500 K, x, ~a. BCF
estimate x, ~ 4a and so, for our example, we take an intermediate value of
x,=2a. The boundary-layer width 8 is taken to be 10-2 cm and the super-
saturation range chosen is typical of experimental values. It is found that,
with these data, the second term of Eqn (4.45) is dominant and so the
growth rate in the BCF solution-growth theory is determined by volume
diffusion over the whole range considered. For the surface-diffusion case
we assume D ,=10-%cm?s~! and y,=10-% cm, which are typical values
for aqueous solution growth according to Bennema’s interpretation
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Fic. 4.15. Growth rate for BCIF volume and surface-diffusion theories:
(a) volume diffusion, (b) surface diffusion, 8 -~ 10 2, (c¢) surface diffusion, 8 — 1.

(Bennema, 1965). The latter value gives o, ~.04 which is within the range
of supersaturation values considered. The value of the growth rate for the
surface-diffusion model depends critically on the parameter 8 of Eqn (4.35).
A value B~1 would indicate that the surface supersaturation has its
maximum value and so corresponds to a maximum growth rate. Bennema’s
estimates of the relevant activation energies suggest a value of g~ 10-2
and the usual values are probably somewhere between these limits. There
is no reason in principle why a factor 8 should not be included in Eqn (4.45)
also. Figure 4.15 shows that ¢ varies as o? in the supersaturation range
shown.

It should be emphasized that the data of Fig. 4.15 represent typical
values and do not indicate the effect of surface diffusion on the system
considered. Surface diffusion will always increase the growth rate, if its
effect is not negligible, by increasing the probability that a solute molecule
will find a kink site. Chernov (1961) also proposed a theory of crystal
growth from solution based on calculation of the flow to a system of
parallel steps, assuming no surface or edge diffusion. The concentration n
is assumed to be described by an equation
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D - =A(n-n,
5, = A )

where # is the concentration at a distance r from a step and 4 a constant
which is large if the kink separation is small. Figure 4.16 shows the solute
diffusion field around the steps assumed by Chernov. The solution of the
diffusion equation gives for the growth rate

AakTn, o?
=4  {1+(4a/D) In (85/ac) sinh (o]ay)} (*+47)

where 0;=4V,,v/kT8.Eqn (4.47) gives a rather similar result for the growth
rate to that of the BCF volume-diffusion theory; at low supersaturations

Fic. 4.16. Solute diffusion to system of steps (after Chernov, 1961, 1963).

(0=<0y) a quadratic law is predicted and the (o) curve becomes linear at
high values of ¢ as the volume-diffusion step becomes rate controlling.
Over a wide range of supersaturation values, Chernov’s equation can be
approximated by a law of the form

T o5, (4.48)

Gilmer, Ghez and Cabrera (1971) have given a more complete treatment
of the mechanism of transport of solute particles to kinks in a step, in-
cluding simultaneous volume and surface diffusion. They also assume a
set of equidistant parallel steps and a high density of kinks so that diffusion
along the edge of a step may be neglected. A single step of height 4 is
considered at y=0, as in Fig. 4.17, and the volume and surface solute
densities are related using three equations. Firstly, Fick’s second law
requires that, in the steady state,

02n 0%n

@ + 6_32 =0 (4493)

since diffusion in the crystal is neglected. Secondly, the surface-diffusion
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process as affected by the volume to surface flow is described by the
equation

*n,
oy

D D(a") -0 (4.49b)
z=0

oz
where 7, in this case is the surface concentration of solute per unit arca.
Finally, the exchange of solute between surface and volume is given by
on Dn n
D( ) = ... (4.49¢)
9z/. o A Tdeaas
The factor D/A represents a “drift velocity” of solute molecules entering
the adsorption layer from the adjacent volume such that A =Argeso1v/Tvainr
where A is the mean free path in the solution and the 7’s are relaxation
times for desolvation and volume diffusion.
The net exchange of solute at a kink is given by the net flux from

neighbouring sites as
=0(3) =T [tymo-n (4.50)
J= av/, g oy l” A=l -

where A, =A7yink/Taire 18 the quantity analogous to /1 for surface diffusion.

In the solution to these equations, the critical parameter is found to be
b=y,/A where y, is, as before, the mean distance travelled by an adsorbed
solute molecule on the crystal surface. The growth rate in the limit 6=0
is given by
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4 ] . . =1
2 :a[‘“g;f‘fis;‘"ﬂf]{g‘f coth (é‘:)— 11] . (451

T'his equation is analogous to Ohm’s law in electricity, o being the driving
force for crystal growth and pz/Dn, a growth “current”. Each of the terms
in the square brackets has the character of an impedance. The first may
be regarded as the impedance of the adsorption reaction and the second is
that of the boundary layer. The third term represents an impedance for
entering the steps and the fourth is that due to surface diffusion.

Equation (4.51) includes Chernov’s theory and the BCF theory and
reduccs to these when the appropriate assumptions arc made. The cffect
of a non-negligible value for & can be included only by numerical com-
putation and examples of such calculations are given in the original paper.
Results of computer simulation of crystal growth taking into account
surface diffusion have been published by Gilmer and Bennema (1972).

It should be noted that, in this treatment, adsorption-controlled growth
which would be expected for large valucs of A is linear in the super-
saturation. This result conflicts with that of Reich and Kahlweit (1968)
which is discussed in the next Section.

4.10. The Role of Desolvation

The formation of complexes between solute and solvent is well established,
and the requirement of desolvation prior to growth has been discussed
briefly in Section 4.5. Desolvation must occur at the crystal surface since
the surface cannot provide a driving force for desolvation at long range.
If, as in the Chernov and BCF solution-growth theories, solute were to
enter the kink sites directly from the solution, desolvation would have to
occur at the same time as the integration process. It appears reasonable to
expect that adsorption onto the surface, which permits partial desolvation
and orientation of the molecules prior to entry into a kink, will be a more
prebable mechanism.

This latter conclusion was reached by Davies and Jones (1951) who
studied the precipitation of silver chloride from aqueous solution by
monitoring the electrical conductivity of the solution. They rcasoned that,
if the growth kinetics were determined by the reaction of Ag- and Cl- ions
at the interface, the rate of crystallization would be proportional to n3,,
where n,,, is the concentration of AgCl in the solution. Since this rate must
equal the dissolution rate when n,,=n,, the net growth rate should be
proportional to #j, —n2 Experimentally they found that the rate of
precipitation was proportional to (n,, —n,)?% and this led them to reject a
model in which adsorption was not included.

Doremus (1958) reviewed the experimental data on the precipitation
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of relatively insoluble salts and also stressed the importance of an ad-
sorption layer. In experiments where ions of one constituent were added
in excess of the stoichiometric ratio, the rate of precipitation was found to
be substantially unchanged on adding more of the excess ions. This result
is best explained by assuming the existence of an adsorption layer which
is “saturated” by the excess ions since the growth rate then depends only
on the minority ion concentration. Doremus extended the concept of
surface reaction-controlled growth, considering both the formation of
molecules on the surface prior to diffusion to a kink and the separate
surface ditfusion of oppositely charged ions which are integrated alternately
into the crystal at the kink sites. In the first case, the precipitation rate was
calculated to be proportional to (n,, —n,)? for a “one-one” electrolyte 4B
and to (n,,-n,)?! for a “two-one” electrolyte 4, B. These dependences
became (n,, —n,)? and (n,, — n,)® respectively for the latter model. Several
examples of a cubic growth law were quoted.

Reich and Kahlweit (1968) proposed a theory which is related to the
BCF volume diffusion theory but which should be applicable to those
cases where desolvation at the kinks is the rate limiting kinctic process.
According to their treatment, the rate of advance of steps is governed by
the flux of desolvated ions to the kinks. T'he step velocity is given by

3V, et

Tdes X,

s

(n., —n)exp (Waes/kT) (4.52)

where 740¢ 18 the relaxation time for desolvation at a kink and Wy the
potential barrier for desolvation. At low supersaturations z,xc¢ through
the term (n,, — n,) and a parabolic ©(o) law is expected since y,x1/c as in
the BCF theory. At high supersaturations volume diffusion will become
the rate-limiting step as predicted in all treatments of solution growth.

4.11. Comparison of Solution Growth Theory with Experiment

One spectacular success of the BCF theory is that it successfully predicted
the occurrence on crystal surfaces of growth spirals, which have now been
observed on a wide variety of crystals. In this section we examine the
ability of this theory and its various extensions to account for experimental
determinations of the variation with supersaturation of the, growth rate of
crystals from solution.

In interpreting experimental data, difficulty is frequently encountered
in distinguishing between boundary-layer and interface-kinetic effects.
Two methods are available for obtaining the form of the ©(o) relationship
for the kinetic process by experiment. The first is to measure the variation
of growth rate with solution flow rate or crystal rotation rate and to extract
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the ©(o) relationship using Eqn (4.21). Alternatively, high flow rates or
rotation rates may be used and the assumption made that the growth rate
is then controlled only by the interface kinetics. The latter assumption is
often of dubious validity and experimental data may underestimate the
true kinetic-controlled growth rate because no allowance is made for a
desolvation or minimum diffusion stage. Unfortunately data obtained by
either method are not available for growth on a habit face from high-tem-
perature solution and we therefore consider the results of experiments on
aqueous solutions. (Measurements of the growth rate in LPE experiments
as a function of the substrate rotation rate will be described in Chapter
8.)

For those crystals to which Brice’s method is applicable, that is for which
the v(w) or v(u) data yield a straight line when plotted according to
Eqn (4.21), a quadratic growth law is often found. Brice (1967a) used the
experimental data on sucrose (van Hook, 1945) and CuSO,.5H,0 (McCabe
and Stevens, 1951; Hixson and Knox, 1951) and found that zxe® except
for Hixson and Knox’s data above 71°C, which indicated a linear growth
law. The data of Coulson and Richardson (1956) also fit a quadratic law but
our attempts to apply Eqn (4.21) to the results of other investigators
were not successful. For example, the data of Mullin and Gaska (1969)
yield a highly non-linear plot of zu~''? against ¢!/ although the growth
rates at high values of u indicate a quadratic law. The extent of the dis-
crepancy between these values and Eqn (4.21) is indicated by an increase
of vu~12 with v, a similar discrepancy with Eqn (4.21) being also found for
citric acid using the data of Cartier et al. (1959). This discrepancy may be
due to convective flow in the solution.

A quadratic growth law has been found for a number of materials grown
under conditions of rapid flow. Examples are sodium chloride (Rumford
and Bain, 1960), ammonium dihydrogen phosphate (ADP) and potassium
dihydrogen phosphate (KDP) (Mullin and Amatavivadhana, 1967) and
potassium sulphate (Mullin and Gaska, 1969). However, a linear growth
law has been discovered by Bransom et al. (1949) for the growth of cyclo-
nite, by Belyutsin and Dvoryakin (1957) for various alums and by Bennema
(1966b) for potassium aluminium alum.

Discrepancies are frequently noted between the results of different
investigators. For example, Mullin and Garside (1967) found that their
results for potassium aluminium alum are best described by a curve of the
form vxo'?, which is in agreement within experimental error with the
expression given by Chernov (Eqn 4.48). The discrepancy between their
results and those of Bennema may be due to the higher supersaturation
range studied by Mullin and Garside. Chernov’s theory is also supported
by the data of Kunisaki (1957) on ethylene diamine tartrate and by
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Fi1c. 4.18. Growth rate of sodium chlorate (after Bennema, 1967).

Garabedian and Strickland-Constable (1970), who reported a variation
of the form zao'7 for the growth of sodium chlorate.

Bennema (1967) used his own results on sodium chlorate to support his
case for the inclusion of surface diffusion in crystal growth from solution.
The experimental data are shown in Fig. 4.18 together with a curve plotted
using the BCF surface-diffusion formula, Eqn (4.41). A similar curve would
be predicted by the BCF volume-diffusion theory but in that case the
linear region would be controlled by boundary-layer diffusion. Bennema
found, however, that changing the stirring rate had no effect on the crystal
growth rate and was therefore confident that the measured growth rate
was determined by the interface kinetics. The slope in the linear region is
roughly one tenth that expected for volume-diffusion control (Eqn 4.14).
This discrepancy was given an alternative explanation by Gilmer et al.
(1971) by the inclusion of the parameter /1 which appears in Eqn (4.51).
Then, in the linear region,

dv Dn,

B ) (633)
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from which they estimate A~108~0.1cm in this case. The data of
Garabedian and Strickland- Constable clearly do not agree with those of
Bennema but, again, this may be due to the fact that they were obtained at
much higher supersaturations.

Alexandru (1971) investigated the growth of ADP by a method similar
to that used by Bennema and also found that his results were best explained
by the BCF surface-diffusion theory.

Gilmer et al. (1971) used Eqn (4.51) to interpret data of Smythe (1967)
on the growth of sucrose crystals. A lincar dependence of © on ¢ was
observed by Smythe at temperatures from 20°C to 70°C. The value of A
at 21°C is estimated as 2 x 10-2 cm, which is much larger than the estimated
value of =4 x10-*cm. If this interpretation is correct, the growth
mechanism must involve adsorption followed by surface diffusion since 4
represents the effective impedance of the adsorption process.

When the results on precipitation, described in the last section, are
included, the weight of evidence appears to favour a growth mechanism
which includes a surface-diffusion process in many cases. This conclusion
is supported by estimates by Conway and Bockris (1958) of the energy
changes occurring during electrocrystallization. They concluded that the
energy required to transfer an ion to a surface site is much less than that
for direct transfer to a kink, and therefore favoured an initial surface
adsorption stage. Electrocrystallization must, of course, include the
transfer of an electron which is required before an ion in the solution can
become a neutral atom, but the situation is otherwise identical to crystal
growth from solution.

The number of ¢(¢) measurements on crystals grown from high-tem-
perature solutions is very small, and these have been made only on un-
stirred solutions.t Elwell and Dawson (1972) found a linear variation for
the growth of nickel ferrite from barium borate and of sodium niobate
from NaBO,. The data for nickel ferrite are shown in Fig. 4.19, and
growth in this casc is believed to be controlled by volume diffusion
through the boundary layer. The value of D/ calculated using Eqn (4.14)
is found to be 5.7 x 10-* em s~'. T'he value of & estimated from Eqn (4.17)
using 3 ~20¢P, p,~45gem 3 D=>~10*cm?s!, u>~0.1ems-!' and
[=0.5cm is 6 ~.06 cm, which gives D/ ~ 1.6 x 10-* cm s'. The agree-
ment between theory and experiment is as good as can be expected in view
of the uncertainties in the values of D, n and u.

A quadratic ©(o) variation was found for the growth of barium strontium
niobate Ba,;Sr, ;Nb,O4 from the system BaO—SrO—Nb,0O,—B,0; as
shown in Fig. 4.20. A remarkable feature of these results is the persistence

+ Measurements on stirred solutions will be published in ¥. Crystal Growth by
Elwell, Capper and D’Agostino.
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of the quadratic law to supersaturations of up to 102, A critical super-
saturation o, of 10° is two orders of magnitude greater than the highest
value reported by Bennema (1967) for crystal growth from aqueous
solution although Bennema et al. (1972) recently revised their estimate of
a, to ~10 ', According to Eqn (4.40), a, is given by 9.5y, a/k Ty, so that
a high value of o, requires cither a high value of y,, or a low value of v..
A high value of o, thus appears to be unfavourable for crystal growth since
both low v, and high y,, will favour deadsorption of surface molecules
rather than integration into the kinks, and it is found experimentally that
Ba, ;Sr, s Nb,Oy 1s a difficult material to crystallize from borate solvents.
The quadratic law may also be due to a surface reaction between, say,
BaNb,O, and SrNb,O; units, as suggested by Tiller (1971), but current
knowledge of the ionic species present in the solution is insufficient to
allow any firm conclusion. A quadratic ©(¢) variation was found to explain
the growth-rate measurements of NaNbOQOj, from a NaBO, flux (Dawson et
al., 1974) and of K'T'a, ,Nb,O, from a K,CO, flux (Whiffin and Brice 1974).

Newkirk and Smith (1965) observed a linear variation in the growth of
BeO from a number of Li,O MoO, solvents. The growth rates for this
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Fic. 4.20. Growth rate of barium strontium niobate (Elwell and Dawson, 1972),

material were only of the order of 10-8 cm s, some 2 orders of magnitude
lower than those shown in Figs 4.19 and 4.20, which are more typical of
the maximum values possible in high-temperature solution growth (Scheel
and Elwell, 1972, 1973a). It is unlikely that such low growth rates for
BeO can be explained simply by a low coefhicient of volume diffusion, and
the simplest explanation would be to postulate a high value for the
adsorption parameter of Gilmer et al. (1971). (It was mentioned above
that a linear 7(0) relation is difficult to explain in terms of the BCF surface-
diffusion theory when the back-stress effect is included. In the next section
we shall discuss the shapes of spirals which may be expected to result
when the growth centre is a pair or group of spirals; one example which can
result in a linear z(o) variation will be included.)

4.12. Non-Archimedian Spirals

In the previous discussion the growth spirals have been assumed to be
of approximately Archimedian shape and to have their origin in a single
dislocation with a screw component. Frequently, however, dislocations
occur in pairs or groups and the spirals originating from such centres will
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normally have more complex shapes, and the growth mechanism may
differ from the simpler case considered in Section 4.7.

If the growth centre is a pair of dislocations of like sign, separated by a
distance greater than 277 *, the shape of the resulting spiral will have the
form shown in Fig. 4.21. If the crystal face is divided as shown by the heavy
dashed line, which will be slightly curved, the two sections will be fed with
steps from the two centres, respectively. The activity is approximately the
same as that of a single spiral. When the centres are separated by less than
2nr.*, the arms of both spirals reach the whole area; if the separation is
much less than r.*, the centre effectively generates two spirals, each with
the same step velocity, and so the activity of the centre will be twice that of
a single dislocation.

When a pair of dislocations of opposite sign are separated by a dis-
tance greater than 277 *, the steps join up to form closed loops, as shown
in Fig. 4.22. This type of cooperation in which a screw-dislocation
source generates a series of continuous layers has been observed by Forty
(1951) and Griffin (1951), along with many other examples of spirals due to
interacting dislocations.

If there are two similar pairs of dislocations separated by a distance
large compared with the separation in each pair, the steps will combine on
meeting and the number of steps passing any point on the surface will be
the same as if only one pair existed. Generalizing from this statement, the
growth rate of a face containing several pairs of dislocations of opposite
sign will be the same as that of a face having only one such pair as the

Fic. 4.21. Growth spiral due to pair of dislocations of like sign.
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Firi. 4.22. Layers due to a pair of dislocations of opposite sign.

active centre. When the separation of a pair is less than 2r ¥, step motion
cannot occur and so no growth will proceed from such a centre.

An interesting case arises when a group of dislocations of the same sign,
all separated by the same distance smaller than 27r*, acts as a spiral source.
Such an array of dislocations may form wherever screw dislocations
occurring in a group lie along some line. T'he type of spiral produced by
this type of group is shown in Fig. 4.23. The scparation y, of the spirals
generated will be determined by the separation / between the dislocations
and is thus independent of the supersaturation o. As a result, the growth
rate v( =, aly,) will depend on the supersaturation only through the
term z,. Since ,,xo [Eqn (4.37)], a linear (o) law is expected and this may
explain the experimental observation of linear kinetic laws for some

materials.
@

Frc. 4.23. Spiral due to a group of dislocations lving along a line.
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Fira. 4.24. Spiral on barium zine fernte (after Cook and Nve, 1967).
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Frequently the spirals which are observed experimentally do not have
curved edges. If the rate of advance of a step over a crystal surface depends
upon the orientation, the spiral may readily develop straight edges which
are related to the slow-growing faces of the crystal. An example of such a
“polygonized” spiral is shown in Fig. 4.24. This spiral was observed (using
optical microscopy) by Cook and Nye (1967) on a flux-grown crystal of
Ba,Zn,Fe;,0,,. The spiral is on the basal plane of the crystal and its shape
clearly reflects the hexagonal symmetry normal to this plane. The height of
the steps in some spirals was determined by replication electron microscopy
as 14.5 A, which corresponds to the unit-cell edge.

The spirals and growth features which are observed experimentally are
often not of unit-cell dimensions but may be built up of 100-10000 unit
cells. In a review by Honigmann (1958), surface studies on solution-grown
crystals of eleven different materials were reported. Spirals were observed
on seven of these materials and non-spiral layer growth on eight. On six
materials, the steps were of one or two unit cells in height, on three they
were of many unit cells in height and on two, step heights in the region of
1000 A were observed.

The formation of “‘macrospirals” observable with a simple microscope

Fic. 4.25. Macrospiral formation due to periodic motion of centre.
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was explained by Amelinckx, Bontinck and Dekeyser (1957) as being duc
to a “wobbling™ of the centre of the spiral at a helicoidal serew dislocation.
T'he effect of a periodic perturbation of the spiral centre is illustrated in
Fig. 4.25, in which the regular fluctuation in the pitch of the spiral may be
seen to give the impression of a spiral of greater pitch. The periodic
perturbation can be included in the theory by replacing the factor € in
Eqn (+.44) by €, sin wt, so that

Ce, sin wt a® oy

tanh .
ay €, SINwla

(1)

and the appearance of a macrospiral will be governed by the relative
magnitudes of the frequency w of the perturbation and the frequency of
rotation of the spiral. Bennema and van Rosmalen (1972) have shown that
fluctuations will always reduce the flow of steps and therefore the rate of
growth.

Bennema (1969) has argued that polygonization of the macrospirals is
explained more readily if surface diffusion of solute occurs than if solute
enters the kink sites direetly. He considered in particular the observations
of Torgeson and Jackson (1965) of the macrospiral shapes on ADP crystals
grown from aqueous solution. When the crystals are grown in a pure
solution, the macrospirals on (100) faces are elliptical with a shorter axis
in the [001] direction as shown in Fig. 4.26(a). When Cr? ions are added
to the solution, the spirals become polygonized along [010] and [001]
directions as shown in Fig. 4.26(b).

According to the PBC description of Hartman (19506), the {100] surfaces

[001]

@ [010] =

(a) (b)

Fic. 4.26. Macrospirals on ADP, schematic (after Torgeson and Jackson, 1965).

L
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Fic. 4.27. Structure of ADP surface (after Hartman, 1956).

of ADP can be considered as narrow regions of positive ions extending in
the [100] direction with a width of ¢/2, alternating with similar regions of
negative ions as shown in Fig. 4.27. An ion in the surface can diffuse
relatively easily along the [010] direction since it always moves past ions
of the same sign. Migration along [001] is, however, relatively difficult
since alternate layers are of opposite charge. This difference in surface-
diffusion rates along [010] and [001] accounts for the ellipticity in the spiral
of Fig. 4.26(a).

When Cr?: ions are added to the solution, many of the kink sites are
filled preferentially with these ions so that the number of kink sites
available for growth is reduced. Polygonization results from the retarda-
tion in the rate at which steps can advance across the surface, but the
anisotropy in the spiral shape is preserved since surface diffusion remains
anisotropic. While alternative means of explaining these results could be
considered (see Section 5), an anisotropic surface-diffusion mechanism
appears to offer the simplest explanation.

Although macrospirals are observed quite frequently on crystal surfaces,
a quantitative theory of their development is still lacking. A qualitative
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treatment of the “bunching” of steps has been given by Cabrera and
Vermilyea (1958) and by Frank (1958b) based on the kinematic wave
theory of Lighthill and Whitham (1955). The formation of large steps by
bunching is governed by kinetics rather than by thermodynamics. The
velocity of any step depends on the proximity of other steps, which will
remove some of the solute. The rate of flow of steps will therefore depend
on the average separation between steps and the kinematic wave theory
describes the motion of macrosteps of constant separation at some rate
v which is less than the velocity @, of a ﬁinglt step. Bunching will be
particularly likely to occur if the \Llocm . Is increasing as crystal growth
continues, since in this case newly formed steps will tend to ()\U"tal\L those
already present on the surface. Bunching is also more probable in impure
solutions, since impurity molecules which are rejected by the crystal
interface tend to impede the motion of steps; highly immobile impurity
ions may become incorporated into the crystal at the resulting macrosteps.
Also the solution flow rate might have an effect on the average step height.

4.13. Surface Morphology of Flux-grown Crystals

Reference has been made above to the observation of growth spirals on the
surfaces of orthoferrite crystals by Tolksdorf and Welz (1972) and of
polygonized spirals on hexagonal ferrites by Cook and Nye (1967). These
observations and the earlier ones of Sunagawa (1967) and others support
the validity of I'rank’s screw-dislocation model. In this section we consider

other observations of surface features of crystals grown from high-tem-
perature solutions and the relation between these features and the mode
of growth. A more extensive discussion of this topic has been given by
Chase (1971).

When crystals nucleate in solution, the supersaturation is normally
much higher than that at which the subsequent growth occurs. As a result
the initial growth of spontancously nucleated crystals tends to be highly
dendritic. The dendrites grow along fast growth directions and this rapid
growth reduces the supersaturation. Subsequent growth occurs more slowly
but the ends of the dendrites will be located in regions of higher super-
saturation than the central region, and solvent inclusions are trapped near
the growth centre as the dendrite arms close. An initial dendritic growth
stage has been described by several authors, for example Lefever and
Chase (1962), White (1965), Chase (1968) and Scheel and Schulz-Dubois
(1971). Figure 4.28(a) shows a large crystal of GdAIO, in which the central
dendritic region may be clearly seen, and Fig. 4.28(b) shows the same
crystal in reflected light with the large concentration of growth hillocks in
the region above the dendritic core,

As growth proceeds on the dendritic core, the stepped edges of the
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dendrite arms provide sites for the integration of solute and a terraced
structure s produced. 1 growth is terminated at this stage the crystals
are found to exhibit a “hopper” morphology as illustrated in Fig. 4.29.
The mechanmism of hopper formation was discussed by Lefever and Giess
(1963), who pointed out that hopper crystals will be more likely if the initial
dendrites attain large dimensions and so incorporate a large fraction of the
available solute.

According to Scheel and Elwell (1973a) hopper growth is assumed to be
an effect of unstable growth. By increasing the supersaturation gradient,
increasingly unstable growth in the following sequence will oceur: fat
faces -formation of inclusions -edge nucleation -hopper growth den-
dritic growth,

I, 4.29. Hopper crystal of hematite (courtesy Mrs. B, M. Wanklvn).

An alternative mechanism of hopper formation was proposed by
Amelinekx (1953). The crystals in this case were considered to grow while
floating on the solution so that the centre of the face is not in contact with
the supersaturated solution. Since contact with the solution occurs only
at the edge, growth occurs only where a step in the growth spiral meets an
edge and a narrow strip of material is deposited. This strip continues to
grow along the edge of the crystal and a vertical hollow box would tend to
develop except that the crystal simultancously grows laterally, Each turn
therefore appears at a greater lateral distance from the centre than the
previous one and the characteristic terraced depression develops. In the
extreme case of growth at the edges of a crystal, the resulting shape will be
a hollow rectangular tube.



Fic. 4.30. Layer growth nucleated at edges and corners. (a) diagrammatic,
(b) edge nucleation on f-eucryptite, LIAISI0, (courtesy K. Mever, E'T'H Zurich).
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If all the crystal faces remain in contact with the solution, continued
growth will eventually result in the establishment of the habit faces.
Growth at relatively high temperatures (and presumably at rather high
supersaturation) was found by Lefever and Chase (1962) to proceed by
nucleation of lavers at corners or edges of the garnet crystals studied. The
layers in this case were normally curved in a direction concave from the
point of origin, as shown in Fig. 4.30(a). T'his curvature arises because of
the higher supersaturation at corners and edges which can lead to an
increase of growth rate with distance from the centre of the face. Similar
layers were observed by Chase (1968) on In,O, crystals and by Quon and
Sadler (1967) on yttrium iron garnet. In the latter case a similar structure
made up of much finer layers was also observed. An example of edge

Fic. 4.31. Growth hillocks on nickel ferrite (Elwell and Neate, 1971).
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nucleation on a B-cucryptite (LiAISIO,) crystal grown from a vanadate flux
1s shown in Fig. 4.30(b).

If the supersaturation is lowered below the value which can promote
corner and edge nucleation, the characteristic features scen on most
crystals are growth hillocks, consisting of lavers roughly 10 % ¢cmoin height,
T'vpical hillocks are illustrated in Fig. 4.31. Growth hillocks arc pre-
sumably formed by a bunching process, as described in the previous
section, which gives rise to the relatively thick layers visible under the
microscope. Other examples of growth hillocks have been described by
Lefever and Chase (1962) and Quon and Sadler (1967) on garnets, by
Chase (1968) on In,Oy, by Sunagawa (1967) on aluminium oxide and by
Scheel and Elwell (1973b) on rare-carth aluminates. Sunagawa (1967) has

4
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. T'riangular growth lavers on lithium ferrite (Elwell and Neate, 1971).
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investigated a large number of flux grown crystals and has obscrved spirals
of monomolecular step height on magnetoplumbite, PbFe,,0,4, on ferric
oxide, alumina and vttrium iron garnet. Pyramidal layers were observed
on spinel, MgALO,. The number of features seen on a given face appears
to depend on the supersaturation and a single feature often dominates a
whole face when growth occurs at low supersaturation. This decrease in
the number of active centres as growth proceeds may have an influence on
the maximum rate of stable growth, as is discussed in Chapter 6.

T'riangular growth layers were observed by Elwell and Neate (1971) on
ferrite crystals, an example being shown in Fig. 4.32. T'his feature appeared
to be the only active growth centre on that particular face, and the layer
height (~10-3cm) is clearly determined by some bunching effect. A
mechanism of crystal growth by the spreading of layers of similar height
was reported by Bunn and Emmett (1949) who studied the growth of lead
nitrate from aqueous solution.

As discussed earlier in the chapter, layers, hillocks and macrospirals
may all have their origin in screw dislocations. Confirmation of the dis-
located nature of hillock centres was reported by Lefever and Chase (1962),
who found on etching the crystal surfaces that an oriented etch pit was
formed at the centre of cach hillock. The most likely conclusion to be
drawn from these surface studies is that growth on habit faces at low
supersaturation frequently occurs by the Frank screw-dislocation mechan-
ism but that edge nucleation may be dominant at higher supersaturations.

4.14. Alternative Growth Mechanisms

Although the mechanism by which crystals grow from fluxed melts is often
the BCE screw-dislocation mechanism, alternative growth mechanisms
arc not rare (Scheel and Elwell, 1973b).

Nucleation of surface layers at corners or edges of a crystal may be by
2-D nucleation rather than at screw dislocations. The relative ease of
nucleation at corners or edges was first proposed from binding energy
considerations by Stranski (1928). Corner and edge nucleation will clearly
be favoured because of the relatively high concentration of solute in these
regions, even if growth occurs by the screw-dislocation mechanism.
Figure 4.33 shows an optical reflection micrograph of a GdAlO; crystal in
which the concentration of hillocks is higher at the crystal edges due to the
higher local supersaturation. As growth continues at a stable rate, the
concentration of hillocks near the edges decreases and so edge growth
becomes less important. The tendency of crystals to grow with raised
edges 1s, however, favoured if growth becomus unstable, as will be dis-
cussed in Chapter 6.

A particularly powerful nucleation site may be formed when the faces

G2
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Fic. 4.33. Growth hillocks at edges and on faces of a GJAdALO, ervstal (Scheel and
Elwell, 1973b).

of a twinned crystal meet along the twin plane at an acute angle. The
resulting twin-plane re-entrant edge ('TPRE) growth mechanism can be
envisaged with reference to IFig. 4.34, which shows a section through a
twinned crystal. The crystal grows by the propagation of layers in the
directions indicated by @, and rapid growth may also occur in the direction
of the twin plane, depending on the nature of the twin and the crystal
structure.

The TPRE mechanism and its influence on the habit of erystals was
described by Niggh (1920) and Spangenberg (1934), who both refer to
Miigge (1911) and Becke (1911), by Wagner (1960), John and Faust (1961)
and Faust and John (1964), the latter giving an extensive list of semi-
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1. 434, Twin-plane re-entrant edge growth mechanism.

Fic, 4.35. Laver spreading influenced by multidomain twinning of NdAIO,
(Scheel and Elwell, 1973b).
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1mm

L L

Fi1G. 4.36. Detail of interactions of twin domains and growth lavers on NdAlO,
crystal (Scheel and Elwell, 1973b).
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conductors grown by this mechanism. T'he habit of ALO,, BeO and
Ba'l'iO), 15 controlled by the relative importance of this mechanism as will
be discussed i the next Chapter.,

Twin domains formed due to a phase transition“during growth may
atfect the growth mechanism even when the angular deviation between
twins 1s very small. Figures 4.35 and 4.36 show growth lavers on the
surface of neodyvmiume-aluminate crystals, "T'he pattern of lavers 1s very
closely related to the domain structure, although the twinning angle is
less than 1 (Geller and Bala, 1936). This interrelation between growth
lavers and domains is not observed in erystals such as Ba'l10, in which the
domains are formed at temperatures well below the growth temperature.

It is not clear whether twin boundaries at very low angles act by

Fra. 4.37. Growth hillocks along a twin plane of GdAlIO, (Scheel and Elwell,
1973h).
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Fic. 4.38. Lavers spreadimg from multiple twimned region of GAdALO, (Scheel
and Elwell, 1973b).

providing centres for classical nucleation or because of a high concentration
of screw dislocations. In some cases, the twin planes provide centres for
the formation of growth hillocks as shown in Figs, 4.37 and 4.38. These
photographs are of GdAIO, crystals, and examples have also been observed
where twinned regions do not provide the dominant growth centres
because of the presence of very active serew-dislocation sources  (see
Fig. 4.39).

Carlson (1958) proposed that low-angle grain boundaries may also
provide more active growth centres than those due to isolated screw
dislocations. T'wist boundaries will give rise to screw dislocations, the
separation of which is given by Nabarro (1967) as
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Fii. 4.39. Dominating growth centre near a twin plane of GdAlO, (Scheel and
Elwell, 1973b).
iof
u" 5 CoseC th Lk

where a is the interatomic separation and & the angle between the adjacent
grains. Using the criterion of BCE for the cooperation between screw
dislocations of like sign, that ¢ 27r%, the minimum angle for preferential
growth at screw dislocations is given by

sing 2 ad=r*.

Thus for r* ~20a, (sce Egn (4.25a) with v, AT~ 1 and o —0.03), ¢ must
be of the order of 1 27, which is typical of the values at which a twin

plane acts as the dominant growth centre.
Cracks which develop in anvy ervstal due to severe strain during growth
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Fro. 4.40. Growth along crack of a GAALO, ervstal (Scheel and Elwell, 1973b).

provide many active growth centres and tend to “heal” by relatively rapid
local growth. Figure 4.40 shows a GdAlO, crystal in which a crack has
developed during removal of the crucible from the furnace in order to
pour off the residual solution. The crack has clearly resulted in many
growth centres which were more active than centres which had previously
dominated growth over the whole face.

In any attempt to assess the growth mechanism of a crystal, care must
be exercised to allow for the mutual influence which neighbouring faces
exert upon each other. An example of this influence is shown in Fig. 4.41
which shows two faces of GdAIO, inclined at 907 to each other. Lavers on
the two faces run in opposite directions, and the layer-rich regions of the
two faces correspond to cach other. On some crystals one face had very
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1. 441, T'wo adjacent faces (at nearly 90 ) of GAAIO, (Scheel and Elwell,

1973b).

active growth centres, with adjacent faces showing hardly any features,
suggesting that the latter faces grew by edge nucleation from the more
active face. Such observations are contrary to the PBC concept, which
treats all {100} faces of a pseudocubic perovskite as essentially equivalent,
and indicate that generalizations on growth mechanisms should be ex-

pressed with care.

4.15. Summary
(1) T'he rate of nucleation of crystals varies rapidly with supersaturation
once a critical value, of the order of 109, [ 1s exceeded and 1s very low at

lower r"UPL'[':\';tT.HT'sIIi[lI]S.
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(i) The initial growth following spontaneous nucleation is often den-
dritic, then terraced, before stable facets are established.

(iii) Crystals grown in a stable mode from high-temperature solution
normally have atomically flat faces, on which growth occurs by the spread-
ing of layers from active centres. The evidence for this statement is based
on observations of growth spirals and layers and it also explains the
observation that crystals preserve their shape although the supersaturation
is not constant across a face.

(iv) A complete description of the growth process should include
desolvation and surface diffusion of solute.

(v) In unstirred solutions, volume diffusion is the most probable rate
determining step. At low supersaturations screw-dislocation growth can
account for most of the experimental measurements of growth kinetics
although alternative explanations are often possible. The theory of solution
growth is still not quantitative since it contains several parameters which
cannot be determined.

(vi) No strict generalization on the growth mechanism and the rate
determining step is possible. Depending on the solute-solvent system and
on the experimental parameters (supersaturation, temperature, concen-
tration, stirring, impurity concentration, etc.) each crystal will have its
individual growth history.
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