50 YEARS CRYSTAL GROWTH TECHNOLOGY

Hans J. Scheel Scheel Consulting <u>www.hans-scheel.ch</u> E-Mail <u>hans.scheel@bluewin.ch</u>

Thanks, Thanks, Thanks

Achievements I

- First crystals of organic pigment dye quinacridone (Chinacridon), condition
 for structural research (1966).
 - 2. Explanation of the formation of "Pyroceram" glass ceramics by phase separation causing nucleation and bulk crystallization, with G. Bayer, O.W. Flörke and W. Hoffmann (1966).
 - 3. First large crystals of ferromagnetic semiconductor NaCrS₂ from Na₂S_x solvent
- (flux) used also for growth of many other sulfides like NaInS₂, KCrS₂, CdS, ZnS, PbS, FeS₂, CoS₂, NiS₂, MnS etc. (1974).
- 4. Forced convection for nucleation control and fast stable growth rates from high-temperature solutions by Accelerated Crucible Rotation Technique ACRT (1971,[1]). Hydrodynamics with E.O.Schulz-DuBois.

Numerical simulation by Mihelcic et al., Kakimoto et al. and Derby et al.

- 5. Evaluation of maximum stable growth rates in flux growth for inclusion-free crystals (with D. Elwell 1972, [1]).
- 6. Ultra-sensitive temperature sensor based on Pt6 versus Pt30 thermopyle with C.H. West (1973).
- 7. Slider-free LPE process for superlattices of p-n-GaAs (1977) and transition to facetting: atomically flat surfaces (1980) proven by Nomarski and by scanning tunneling microsopy (with G. Binnig and H. Rohrer), theory with A. Chernov (1995).

Achievements II

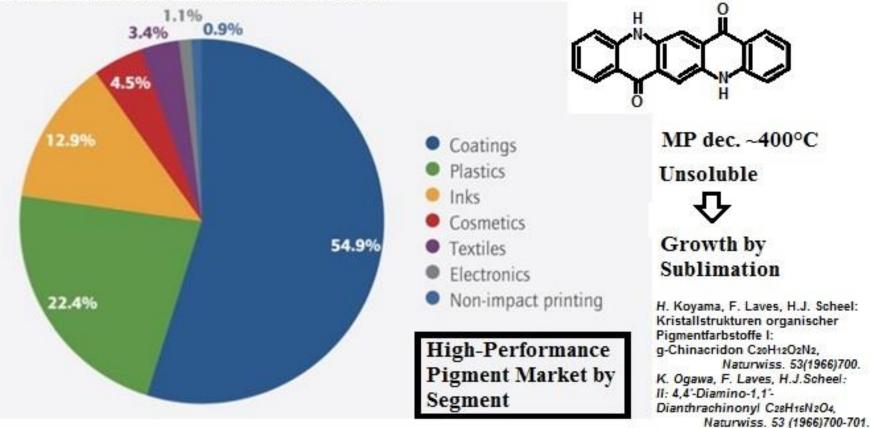
- 8. "Inherent" crystal growth problem of striations solved by ACRT and optimized T
 - control for flux growth of striation-free KTa_{1-x}Nb_xO₃ (KTN) solid solutions (with D. Rytz 1982), theory with R.H. Swendsen (2001), [1].
- 9. Flame-fusion (Verneuil) growth of SrTiO₃ with J. G. Bednorz (1977).
- 10. Growth of dislocation-free SrTiO₃ crystals (with J. Hutton and R.J. Nelmes 1981).
- 11. Distribution coefficient k=1 achieved in growth from high-temperature solutions (with R.H.Swendsen 2001).
- 12. First growth of colorless Anatase (TiO₂) crystals by chemical vapor transport (with M. Graetzel et al. 1996).
- 13. First free crystals of high-temperature superconductor YBa₂Cu₃O_{7-x} and thick YBCO crystals grown from high-temperature solutions (with F. Licci 1988, W. Sadowski 1989, [1]).
- 14. Leading-edge growth mechanism discovered on thin YBCO plates explaining growth of majority of thin plates in unstable growth regime (with Ph. Niedermann 1989, confirmed by H. Müller-Krumbhaar).

15. LPE of YBCO and NdBCO (with C. Klemenz 1992-1996, parallel with P. Görnert in Jena).

16. LPE of GaN (with C. Klemenz 2000).

X

- 17. Definition of 8 epitaxial growth modes (1997, in [1] and [2] 2007).
- Construction of versatile Verneuil furnace for growth-rate measurements;
- of ultra-pure glovebox system with O₂ and H₂O below detection limit;
- of Czochralski model with four visualization methods.


Videos in Section "Crystal Growth" of Website <u>www.hans-scheel.ch</u>

- <u>Acknowledgments & Thanks</u>
- My Early 25 Years
- Organic Pigment Dyes
- <u>Pyroceram-type Glasses</u>
- Crystal Growth of NaCrS₂
- Zero or Forced Convection
- <u>ACRT</u>

- * Striation Problem solved
- * <u>Strontium Titanate</u>
- * <u>Slider-free LPE +Super-Glovebox</u>
- * <u>Czochalski Flow</u>
- * High-Tc Superconductors
- * My New Projects
- * My New Family

COATINGS WORLD: With an overall value of \$4.76 billion, the market for high performance pigments is poised for steady growth worldwide. Quinacridone 2016 178.844 tons. 1960: CIBA, Farbwerke Hoechst, DuPond, now Clariant India & China, AkzoNobel

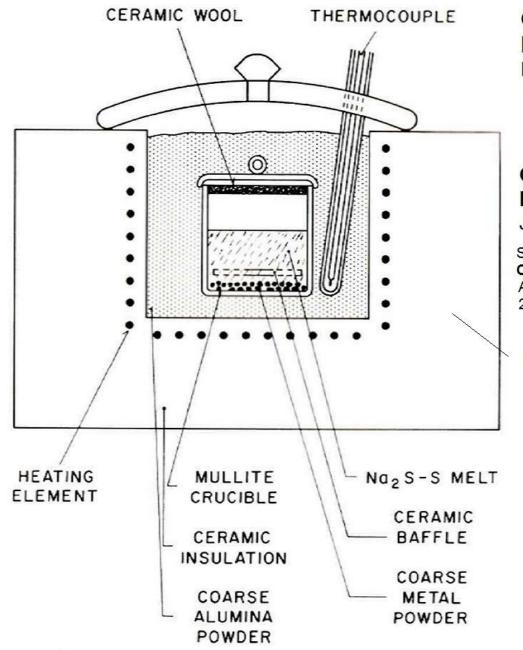


Fig. 1. Arrangement of crucible with alkali polysulfide melt in the muffle furnace.

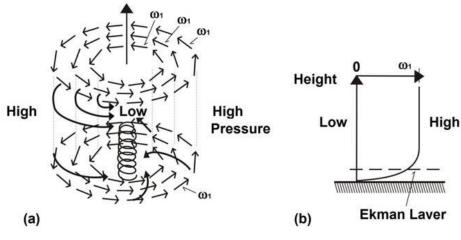
Growth of NaCrS₂ from Na₂CO₃-K₂CO₃ melts:

R. Schneider:

J. Prakt. Chem.8(1873)38, 56(1897)415

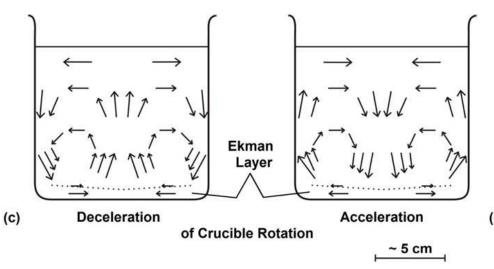
S. Haussühl, M.Schieber: unpublished

Growth of NaCrS2 from Na2Sx-


Melts: H.J. Scheel: J. Crystal Growth 24/25(1974)669-673

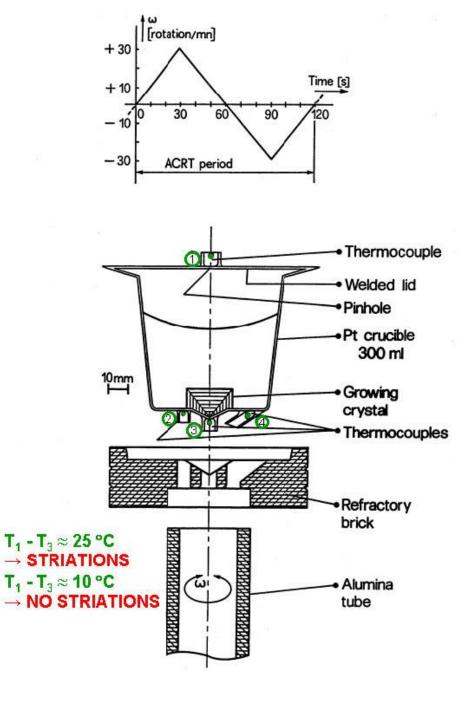
See also in D. Elwell and H.J. Scheel: Crystal Growth from High-Temperature Solutions, Academic Press 1975, E-scan with Chapter 11 and 2 Appendices in www.hans-scheel.ch

Simon-Müller-Furnace


Tornado

Problem of H. Rohrer 1969: Large GdAlO3 crystals

Schematic View of a Tornado with Flow Profile (a) and Velocity Distribution in the Surface Friction (Ekman) Layer (b).


Spiral-Shear Flow and Ekman-Layer Flow, Movie at ICCG Marseille 1972

The Ekman Layer Flow occurs also in a circular Container with flat Bottom (c) when its Rotation is decelerated, and the opposite Flow upon Acceleration (d).

(d) Accelerated Crucible Rotation Technique (ACRT) H.J.Scheel, J. Crystal Grrowth 13/14(1972)560-565

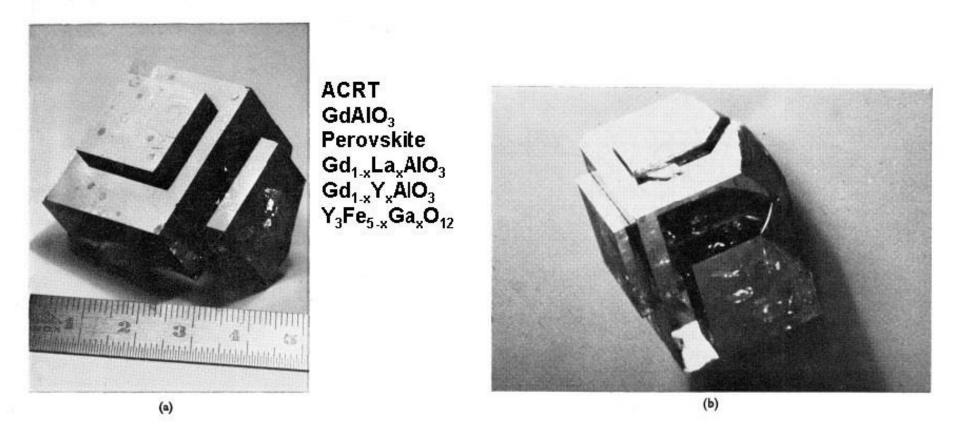
Accelerated Crucible Rotation Technique ACRT

 Theory & Film with Erich Schulz-DuBois 1971, IBM
 Computer Simulation & Film M. Mihelcic 1979 KFA Jülich

ACRT in Growth from High-Temperature Solutions

- GdAlO₃ & Solid Solutions, GdAlO₃:Cr, LaAlO₃, KTN, Magnetic Garnets, SrTiO₃: H.J. Scheel, IBM Zurich
- Magnetic Garnets: W. Tolksdorf, Philips Hamburg
- Magnetic Garnets: P. Görnert, Jena/DDR
- Emerald: G. Bukin, Novosibirsk
- Pb(Fe0.5Nb0.5)O3, Pb(Mn0.5Nb0.5)O3 with Hans Schmid et al. and P. Tissot.

ACRT in Bridgman Growth (> flat growth surface)


- Halogenides: A. Horowitz, Israel
- CdTe/HgTe Solid Solutions: P. Capper, Millbrook Southampton UK
- III-V Solid Solutions: P. Dutta, Rensselaer

Polytechnic Troy N.Y.

ACRT in Growth from Vapor

- CdS: H.J. Scheel (unpublished)

Temperature Measurement^{List} not complete at Rotating Crucible at high Temperature

- H.J. Scheel: Accelerated Crucible Rotation: A Novel Stirring Technique in High-Temperature Solution Growth. J. Crystal Growth 13/14 (1972) 560-565.

- H. Rohrer and H.J. Scheel: Experimental Verification of Random-Field Critical and Multicritical Behavior. Physical Review Letters 44 (1980) No.13, 876-879.

- H.J. Scheel and R.H. Swendsen: Evaluation of Experimental Parameters for Growth of Homogeneous Solid Solutions. J. Crystal Growth 233 (2001) 609-617.

 H.J. Scheel: Theoretical and Technological Solutions of the Striation Problem. J. Crystal Growth 287 (2006) 214-223.

Table 2

Characteristics of various growth experiments of $KTa_{1-x}Nb_xO_3$ mixed crystals

20 KTN Papers: Growth Conditions

•	<u> </u>
-	
•	ñ.

Bell

										472
Refs.	Composition range	Growth method	Thermal regulation	Cooling interval	Cooling rate (°C h ⁻¹)	Mass of melt (g)	Composition of melt (mole% K_2CO_3)	Additives	Loss (g h ⁻¹)	- 2
[19]	$0.2 \le x \le 1.0$	Kyropoulos	±0.1°C	~15°C	0.1-0.5	20	50	None	?	-
[29]	0.35	TSSG	?	?	0.1	1300	50-52	SnO ₂ (0.1 mole%)	?	
[30]	0.35	TSSG and "floating crystal"	?	?	?	350	53-60	None	0.06-0.2	D. Ry
[31]	0.35	Hydrothermal	?	-	-	_	Excess KOH			tz, H.,
[32]	0.35	TSSG	?	?	?	32000	50	CaO, PbO,	0.2	I. Sch
[33]	0.35	Hydrothermal	?			10	Excess KOH	SnO ₂ (1 ωt%)	_	eel / 1
[34]	$0.30 \le x \le 0.39$	Pfann technique	±0.5°C	-	_	1400	65	$(1 \ \omega t \%)$ SnO ₂ $(0.5 \ \omega t \%)$?	Growth
[35]	$0.40 \le x \le 0.55$	TSSG and spontaneous nucl.	?	?	2-6	600	70	None	?	h of KTa
[36]	$0.34 \le x \le 0.40$	TSSG	?	?	?	1000	52-65	SnO_2	?	1-xN
[37]	0.25	TSSG	?	?	?	800	52	(0.1 mole%) None	?	b _x O ₃ (
[20, see also ref. [8]	$0.05 \le x \le 0.60$	TSSG	?	?	0.5	?	60	SnO ₂ (10 ppm)	?	0 < x =
[38], see also ref. [39]	Various	TSSG	?	?	?	800	≥50	(rr)	?	≤0.04
[28] [40]	0.38 0.35	Mass transfer Mass transfer	±0.1°C ?	-	-	400 1400	55 53.5	None SnO ₂ (0.1 mole%)	? ?	B D. Rytz, H.J. Scheel / Growth of $KTa_{1-x}Nb_{x}O_{3}$ ($0 < x \le 0.04$) solid solutions
[41]	0.35	Mass transfer	±0.1°C	-	-	400	55	None	Considerable	lution
[22], see also refs. [24,42-44]	0≤ <i>x</i> ≤0.10	Spontaneous nucl.	±2°C	500°C	5	20	55-60	CuO, Fe ₂ O ₃ ,	?	2
[45]	0.28 and 0.40	Mass transfer	?	-	-	?		None	?	
[46]	0.30	TSSG	?	?	?	?	?		?	
Present work	0 < x < 0.04	Slow cooling	±0.1°C	~40°C	0.15	1100	60	None	0.1	R + S

Lable 2 (continued)

(KTN Papers: Growth Results

Refs.	Growth rate (Å s ⁻¹)	Size of resulting crystals (mm ³)	Developed faces	Colour	Characterization	Measured Δx (local)	Calcu- lated Δx (total)	Stria- tions	Other defects
[19]	350	6.5×6.5×3.2	(100)		Dielectric constant	0.03	0.10	?	
[29]	720	15×10×10	(100)	Colourless	Dielectric constant	0.002	0.02	Yes	
[30]	2800	15ר 10		Colourless	X-ray fluorescence	?	0.06	Yes	"Some" strain
[31]	?			Colourless	X-rays; microprobe	?	-	Yes	Exsolution patterns
[32]	360	80×80×30	(100) and minor (110)	Colourless	X-ray fluorescence	0.01	0.10	Yes	Bell
[33]	710	5×5×5	(100) and minor (111)			?	-	Yes	
[34]	850	40×40×30	(100)		Dielectric constant	0.01	-	Yes	
[35]	?	$\begin{array}{c} 8 \times \varnothing \ 15 \\ 5 \times 5 \times 2 \end{array}$		Pale yellow	X-rays; dielectric constant	?	0.04	?	Cracks
[36]	?	?		Colourless	Resistivity	?	?	?	
[37]	2000	8×8×7	(100)		Dielectric constant	0.01	0.01	?	
[20], see also ref. [8]	1400	1000-3000	(100)		Volumetric method	0.08	?	?	Large strain; grain boundaries
[38], see also ref. [39]	400-2800	2000	(100)			0.01	0.04	?	Mosaic spread 0.02°
[28]	220-420	1000	(100) and minor (110)	Colourless	Resistivity	?	-	?	
[40]	4000	50×50×10	(100)	Colourless		?		Yes	Inclusions
[41]	1200	30×30×20	(100) and minor (110)		Microprobe	0.04	-	Yes	
[22], see also refs. [24,42–44]	300	10×5×5	(100)	Yellow	Microprobe; density; dielectric constant; elastic step	0.003	0.25	Yes	
[45]	120	1000		Colourless	Dielectric constant; resistivity	?	-	?	Mosaic spread 0.01°
[46]	?	?		Blue	Resistivity	?	?	?	
Present work	100-400	25×25×10	(100)	Colourless	Microprobe: elastic step	< 0.03	0.06	Very faint	R + S

D. Rytz, H.J. Scheel / Growth of $KTa_{1-x}Nb_xO_3$ (0 < x < 0.04) solid solutions

PhD Thesis at ETH Lausanne IBM Zurich Research Laboratory

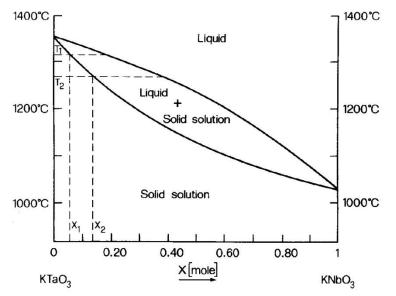


Fig. 2. Schematic solid-solution phase diagram (after ref. [5]). Growth starts at temperature T_1 with an initial concentration x_1 , and ends at temperature T_2 with a final concentration x_2 .

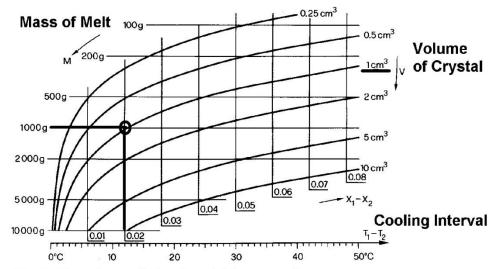


Fig. 3. Plot of crystal size V and inhomogeneity $x_1 - x_2$ as a function of experimental parameters (mass of melt M and cooling interval $T_1 - T_2$). A numerical example is detailed in the text.

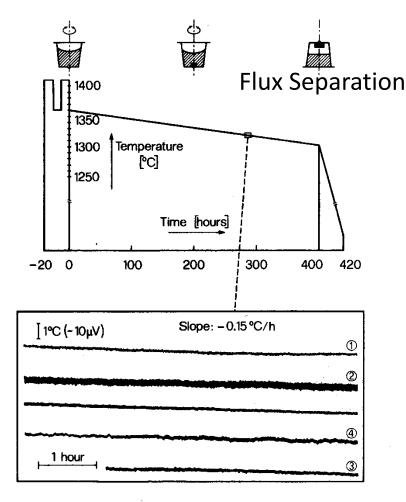


Fig. 7. Different steps of a growth experiment. A short interv during cooling is shown on a real temperature plot. The nur bers correspond to the thermocouples of fig. 6. The unlabelle thermocouple was located at the back of the furnace.

D. Rytz & H.J. Scheel J. Crystal Growth 59(1982)468-484

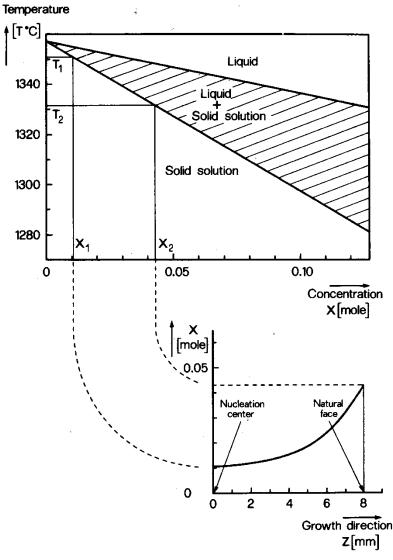


Fig. 4. Schematic phase diagram of $\text{KTa}_{1-x}\text{Nb}_x\text{O}_3$ and spatial variation of the concentration x along the growth direction z. The inherent bulk concentration gradient induced by the slow-cooling method is clearly shown. (The numerical values $T_1 - T_2 = 20^{\circ}\text{C}$, $x_1 - x_2 = 0.03$ and $V \sim 8 \times 16 \times 16$ mm³ correspond roughly to the numerical example detailed in the description of fig. 3.)

J.A. Burton, R.C. Prim, W.P.Slichter: J. Chem. Phys. 21(1953)1987-1991 Keff for growth from melts

W. Van Erk: J.Crystal Growth 57(1982)71-83 Keff for growth from solutions

W. Nernst: Z. Phys. Chem. 47(1904)52-55 Diffusion-limited growth rate V = σ D / $\rho\,\delta$

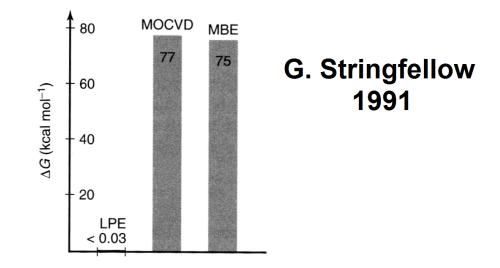
<u>Conditions for Growth</u> <u>of Striation-Free</u> <u>Crystals</u>

Flat (smooth) Growth Surface
 Isothermal Growth Surface ↓ ΔT/T < 10⁵
 Homogeneous Melt or Solution Δn/n < 10⁶
 Constant Growth Rate ΔV/V < 10⁵

When above conditions are established: Hydrodynamic Fluctuations are <u>not</u> harmful.

Forced Convection and ACRT can Assist to Homogenize the Melt or Solution.

+ Precise Temperature Control.


H.J. Scheel and R.H. Swendsen: Evaluation of Experimental Parameters for Growth of Homogeneous Solid Solutions. J. Crystal Growth 233(2001)609-617

YIG Crystals ACRT-grown by Wolfgang Tolksdorf for Philipps Microwave Devices

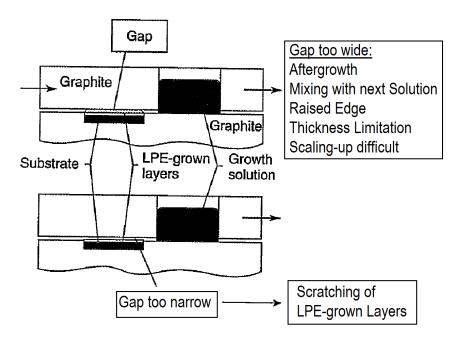
Homogeneity importance for magnetic, magneto-optic, ferroeletric, nonlinear-optic and photorefractive applications: Crystal Growth and Electro-optic Properties of Oxide Solid Solutions: H.J. Scheel and P. Günter, Chapter 12 in *Crystal Growth of Electronic Materials*, editor E. Kaldis, Elsevier 1985.

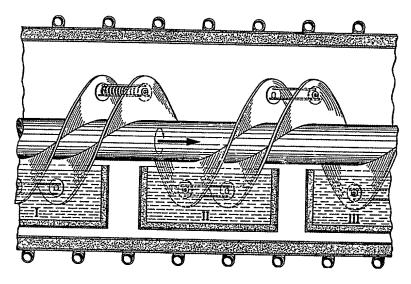
Supersaturation in Growth from Vapor and in LPE

Gibbs free energy differences between reactants and products (layers, crystals). The estimated thermodynamic driving forces for LPE ($\Delta T < 6$ K), MOCVD (TMGa + arsine) and MBE (Ga + As₄) of GaAs at 1000 K. (After Stringfellow, 1991) Reprinted from *J. Cryst. Growth*, **115**,

Supersaturation ratios for VPE and LPE derived from interstep distances y_0 of GaAs and of the high-temperature superconductor $YBa_2Cu_3O_{7-x}$ (YBCO)

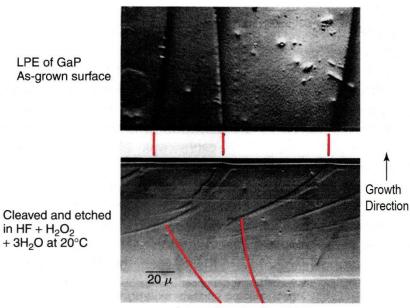
	For GaA	S	Fo	r YBCO
	MBE, MOVPE	LPE	VPE, MOVPE	LPE
У0 r _S *	$20-100 \text{ nm}$ $1.1-5.5 \text{ nm}$ $\sigma_{\text{MBE,MOVPE}} \sim 60$	$6 \mu m$ 300 nm $0 imes \sigma_{LPE}$	14-30 nm 0.8-1.6 nm σ_{VP}	$\begin{array}{l} 6\mu m\;(0.6{-}17\mu m)\\ 300nm_{E,MOVPE}\sim 200\times\sigma_{LPE} \end{array}$


T. Nishinaga and H.J. Scheel in Advances in Superconductivity VIII Vol.1, editors H. Hayakawa and Y. Enomoto, Springer Tokyo 1996, 33.


Eight epitaxial growth modes in *Crystal Growth Technology,* editors H.J. Scheel & T. Fukuda Wiley 2003, Chapter 28

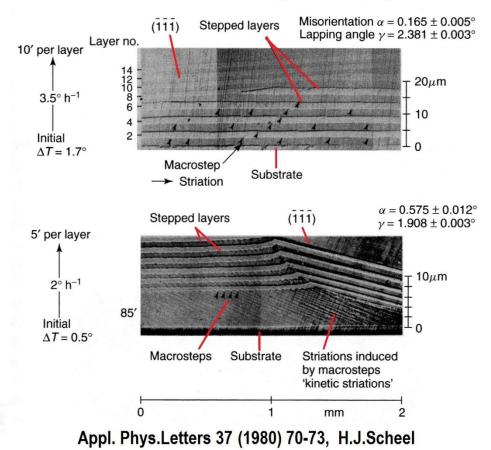
Liquid Phase Epitaxy

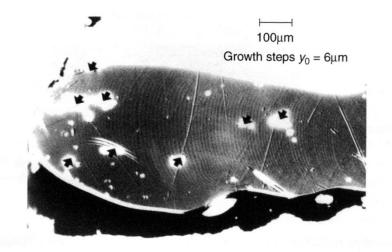
Problems in Slider Technology

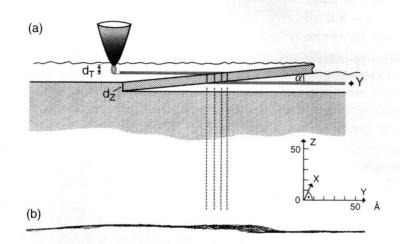


Sliding-free Technology for Mass Production

US Patent 3,858,553 (Jan.7, 1975, H.J.Scheel /IBM, J. Crystal Growth 42(1977)301 - 308 (ICCG-5 Boston).


Macrostep-Induced Striations




Increasing step bunching

J. Nishizawa and Y. Okuno, Cetniewo, Poland 1978

Transition to Faceting in Multilayer LPE

Differential interference contrast microscopy (Nomarski) of GaAs (111) facet. Step distances of 6 μ m are visible.

Step heights of 6.5 A are measured by STM. (a) Principle, (b) Multi scan by STM.

H.J. Scheel, G. Binnig and H. Rohrer: Atomically Flat LPE-grown Facets Seen by Scanning Tunneling Microscopy, J. Crystal Growth 60(1982)199 - 202.

Comparison of PVD/CVD Surfaces with LPE Surfaces of High-Temperature Superconductors

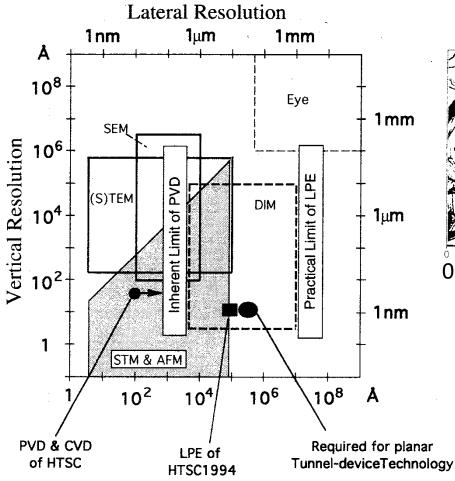
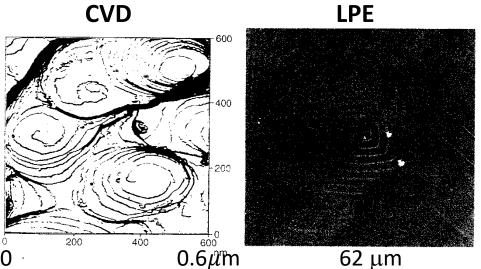
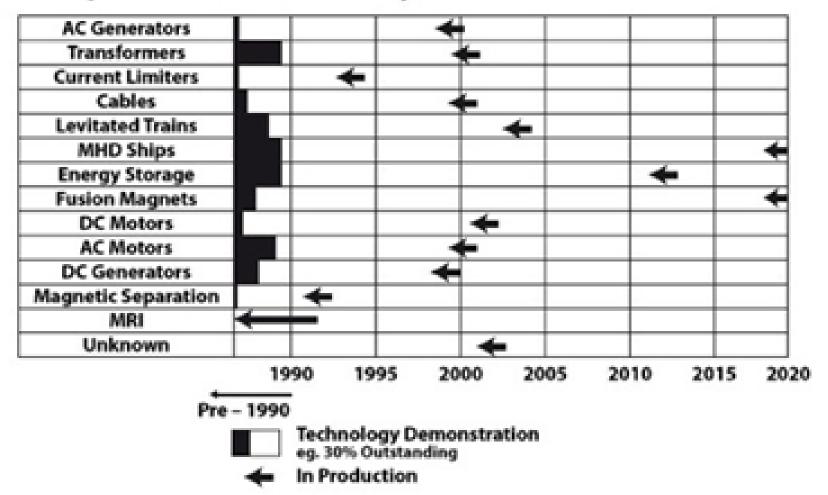


Figure 11. Surfaces (step heights and lateral step distances) of YBCO grown by PVD, CVD, and LPE and the detection limits of electron microscopes (SEM, TEM), scanning tunneling microscopy (STM) and atomic force microscopy (AFM), and of the optical differential interference contrast (Nomarski) microscope (DIM). Also shown are the inherent limit of PVD and the practical limit of LPE by vertical bars, and the step distances required for a planar HTSC tunnel-device technology.³⁴



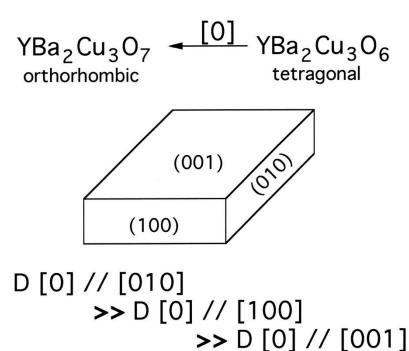

Figure 12. Typical spiral structures of (a) CVD-grown³⁶ and (b) LPE-grown YBCO layers. The LPE spiral has a diameter of 62 μ m. Note the different scales which correspond to >3 × 10⁸ spiral islands/cm² in vapor-grown and to about 10³ spirals/cm² in LPE-grown layers.

 Monosteps on extremely flat YBa2Cu3O7-x surfaces grown by liquid-phase epitaxy, Appl.Phys.Lett. 65 (1994)901-903. (H.J. Scheel, C. Klemenz, F.-K. Reinhart, H.P. Lang, and H.-J. Güntherodt)

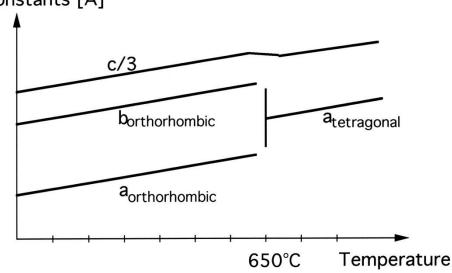
Materials Engineering Problems in Crystal Growth and Epitaxy of Cuprate Superconductors, MRS Bulletin **19**(1994)26-32 (H.J. Scheel)

Predicted Applications of High-Temperature Superconductors for Energy Storage & Electricity Transport and for Fusion Magnets 1991/1994

Prospects for 21st century

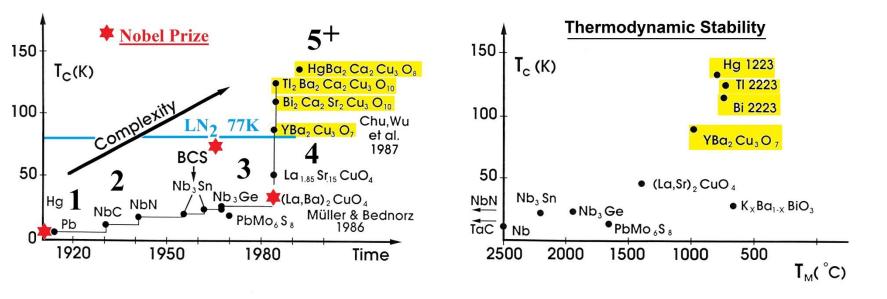

High-Temperature Superconductivity HTSC

Discovery 1986 initiated in the IBM Zurich Research Laboratory, Switzerland K.A.Müller &J.G.Bednorz 40K; C.W.Chu &M.K.Wu et al. at Houston/Texas 92K !!! Details in <u>www.hans-scheel.ch</u>


- *HTSC for Energy Saving: Motors, Generators, Current Limiters, MHD Ship Drive, Levitating Trains, etc.
- *HTSC Cables for Electricity Transport: No Loss
- *HTSC for Energy Storage: Flywheels
- *HTSC for Computers: Josephson Devices
- *HTSC for Medicine: Squid Detectors

Problem: <u>Not physics</u>, but Materials & Crystal Growth Problems, Physical Chemistry, Mechanical Engineering for Fabrication of Reliable Layers, Cables, Coils.

Chance with educated Crystal Technologists in Future


Lattice constants [Å]

Oxidation and Epitaxy Problems with High-Tc Superconductors

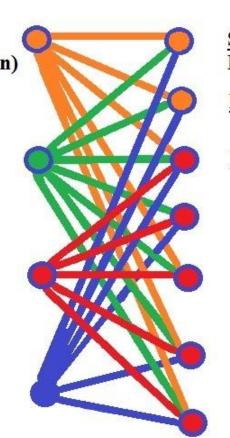
Growth of YBa2Cu3O6 which has to be oxidized to YBa2Cu3O6.85 to become superconducting at 92K. Problems: Phase transition, Anisotropic diffusion coefficients, Thermal expansion difference Mechanical properties. Goal: Prevent cracking, twinning, grain boundaries/dislocations, strain/bending. Similar problems in epitaxy: Substrate with low misfit, fititng thermal expansion and phase transition, mechanical properties.

A task for well-educated <u>crystal</u> <u>technoogists</u> in collaboration with physico-chemists, mechanical engineers, structure engineers.

- Problem: Define the optimum HTSC compound which has sufficient thermodynamic stability to develop Crystals, Epitaxial Layers, Coils etc. for Applications in Energy / Electricity Technology, as Squid Detectors in Medicine, as Josephson Devices in Ultrafast Computers, and for applications in Fusion Energy.
- **<u>2. Problem</u>**: Develop a substrate for the optimum HTSC compound which prevents cracking ,twinning and formation of dislocations/grain boundaries upon cooling from synthesis temperature, from oxidation and from phase transition.
 - *Materials Engineering Problems in Crystal Growth and Epitaxy of Cuprate Superconductors,* Material Research Bulletin **19**(1994)26-32 (H.J. Scheel).

Effect of Growth Parameter on Crystal Property

Parameter


Growth Temperature (from Melt or from Solution)

Supersaturation

Growth Rate Growth Mechanism

Temperature Gradient

Hydrodynamics

Property

Stoichiometry Equilibrium Defects

Impurities

Homogeneity

Inclusions

Structural Perfection

<u>Facet</u> or Isothermal Surface

Speed & Economy

Multi-Parameter Processes Approach : Trial & Error Systematic Intuitive / Empirical Design of Experiment Fully Scientific

Complexity Multidisciplinary Scaling / Dimension Problem

Art Science of Crystal Growth

> Other Parameters Chemicals Purity Solvent Transport Agent Dopant Crucible: Composition, Size, Shape, Purity Atmosphere; Gravity

"Sufficient" Characterization

High - Tc Update Vol. 5 No. 19, Oct.1, 1991 p.3 Overviews

Problems in the epitaxial growth of high-Tc superconductors are reviewed by H. J. Scheel et al. (Swiss Federal Institute of Technology, Lausanne), who discuss epitaxial deposition techniques and parameters, growth mechanisms and film orientation, substrates, and characterization. The authors stress that, since it is very difficult to achieve reproducibility of growth, "sufficient" and crustals characterization of the epitaxial films and surfaces is of utmost importance. The term "sufficient" means all those chemical and structural aspects of the layer which have or may have an influence on the measured physical phenomenon or on the specific application. The authors also note that film-growth processing with lower growth (substrate) temperatures (below 500°C, if possible) is desired for combining semiconductor and superconductor technologies (45 references).

NATO Advanced Study Institute

July 10-23, 1994 Greece Prof. John Clem, AMES Labortory Editor of High-Tc Update: No HTSC paper with sufficient characterization! No reproducibility in solid-state physics of high-Tc superconductors!


Responsibility of Physicists and of Crystal Growers!

Single Optimum Technology for Growing a Specific Crystal or Epilayer with Specifications for a Given Application

- based on
- Thermodynamics / Phase Diagrams
- Principles of Crystal Growth and Epitaxy
- ► Energy Consumption, Infrastructure
- ► Economics, Resources
- ► Timeliness
- ► Ecology

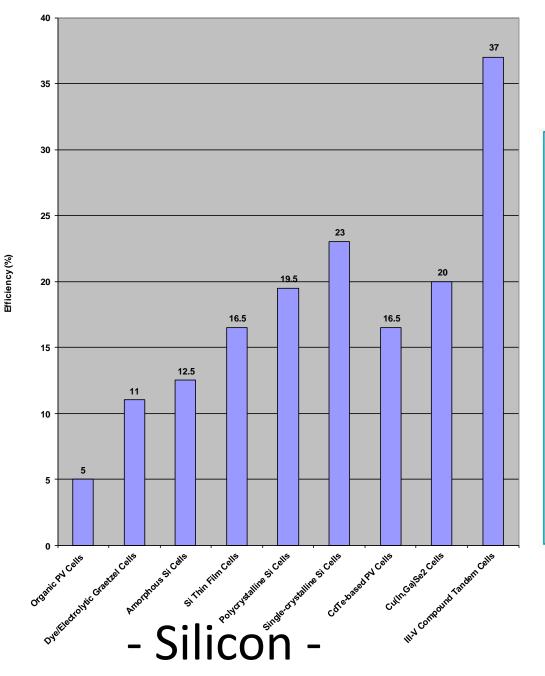
Requirements: Education of Crystal Technologists

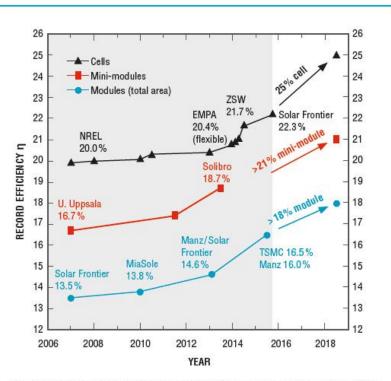
- **Engineers and Scientists with multi-disciplinary Education plus special Education in Crystal** Fabrication Technology, Crystal Machining, Epilayer Growth, Surface Technologies, and Crystal, Epilayer and Surface Characterization
- ▶ Workshops and Schools on Crystal Technology
- 7th International Workshop on Crystal Growth Technology IWCGT - 7 Potsdam / Berlin July 2 - 6, 2017

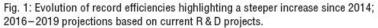
- Enhanced Developments of Solid State Sciences and of Technologies
- ▶ Improved Reputation of the Field Crystal Growth

Examples:

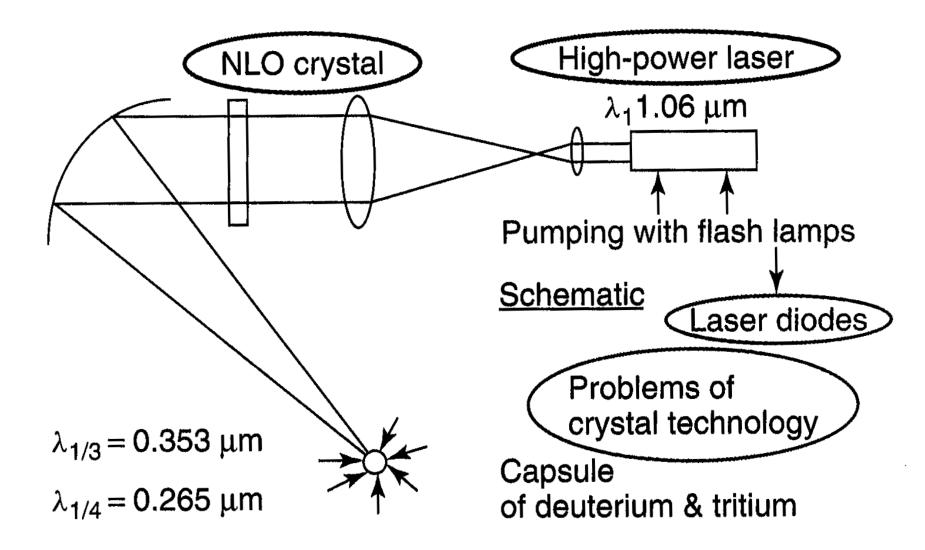
- 1. Reliable Josephson Device / Squid Technology based on High-T, Superconductors demands atomically flat surfaces due to short coherence lengths and required nmthin barrier layers. 1989 More than 1000 groups worldwide tried to achieve this by about 10 different methods of vapor epitaxy: Island formation, maximum interstep distance 50 nm. Only by liquid phase epitaxy near equilibrium can atomically flat surfaces be achieved with interstep distances of more than 10 µm.
- 2. GaN: Only by liquid phase epitaxy on GaN substrates can low dislocation densities required for highest-efficiency and longest-lifetime light-emitting diodes and power devices be achieved (not by MBE or MOCVD, exception immiscibility).
- 3. Growth of Homogenous Crystals of Solid Solutions at Highest Yield and Without Striations not by reduced convection or in microgravity. Only by optimized forced convection can economic growth of solid solutions and of doped crystals be achieved.
- 4.Apple's dream of sapphire screen on iPhone and iPad: Apple spent 439Million \$ and GT 900Million \$ to build a factory in Mesa/Arizona and 2036 large HEM furnaces and hired 700 employees for producing 262 (164)kg sapphire boules*. Agreement signed by Apple and GT October 31, 2013, GT bankruptsy October 6, 2014. Wall Street Journal November 20, 2014. *30x of largest competitor.




Horizontal crack



Best Efficiencies of Research Solar Cells Data from T. Surek/NREL 2004



CPV with Optimum Growth Process?

Has Fusion Energy by Magnetic Inclusion (Tokamak) a Chance as long as the Problem of the "First Wall" is not solved?

Laser Crystals and NLO Crystals for Laser Fusion Energy

CONCLUSIONS / REQUIREMENTS

Required Progress in

- Theoretical Understanding of Growth Parameters and Growth Processes, Develop Optimum Technology
- Education of Crystal Technologists with Emphasis on Epitaxy Problems and on Energy Problems
- Solve the Relevant Crystal-, Epitaxy- and Fabrication Problems of High-Temperature Superconductivity with <u>one</u> Optimum HTSC Compound with Tc above Boiling Point of Liquid Nitrogen

- Looking back 50 years work: It was always challenging and fun to work in Crystal Growth Technology

Thank You

for giving me the DGKK-Award and for listening

Tsunami Sumatra 26.12.2004

Tsunami Tohoku, Japan 11.3.2011

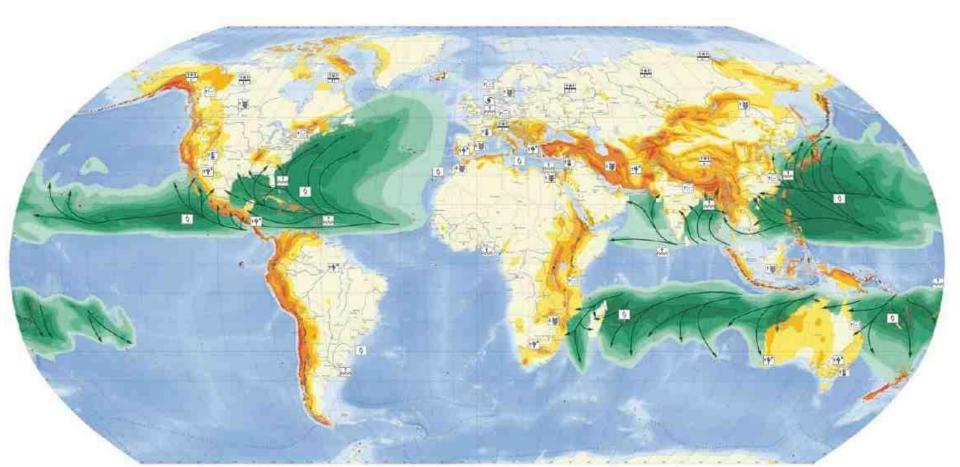
Hurricane Katrina 29.8.2004

Typhoon Haiyan, Philippines 8.11.2013

Total	238'300 Fatalities	Damage 438 billion \$
Haiyan Typhoon 2013	8'000 Fatalities	Damage 2.86 billion \$
		+ global & Fukushima consequences
Tohoku Tsunami 2011	19'000 Fatalities	Damage 300 billion \$
Katrina Hurricane 2005	1'300 Fatalities	Damage 125 billion \$
Sumatra Tsunami 2004	210' 000 Fatalities	Damage 10 billion \$

Vertical Submerged Barriers to Prevent Flooding and Erosion

Hans J. Scheel


Scheel Consulting, Switzerland, hans.scheel@bluewin.ch

With Contribution from Hisham Elsafti & Hocine Oumeraci Leichtweiss-Institute for Hydraulic Engineering, Techn. University Braunschweig, Germany h.el-safti@tu-braunschweig.de; h.oumeraci@tu-braunschweig.de

Results of Numerical Modelling (H.El-Safti)

Assumption: Strong Tsunami: At 4000m water depth Speed 713 km per hour (198m/s), wave height 1.00m At the impermeable TFB barrier at 30m water depth Speed 65 km per hour (18.1m/s), wavelength 188.92m, wave height without barrier 3.40m Runup x 2.0566 = 6.992m wave height at the barrier Pressure 66.587kN/m2 = 6.66t/m2 Horizontal force per meter at seabed level = 223.04t/m

NATHAN WORLD MAP OF NATURAL HAZARDS

EARTHOUAKES

Zone 0: MM V and below
Zone 1: MM V1
Zone 2: MM VII
Zone 2: MM VIII
Zone C MM IX and above

Probable maximum intensity. (MM: Modified Mercalli scale) with art esceedance probability of 10% in 50 years depaiyabent to a "yeturn period" of 475 years) for medium subsoil conditions.

D Large city with "Mexcus City effect"

TROPICAL CYCLONES Peak wind speeds in kni/hi*

Tent Zone 0:78-141 Zone 1: 142-184 Zone 2: 185-212 Zone 3: 213-255 Zaris & 053-299 Zone 5: x 300

* Probable maximum intentity with an ease-datate probability of 10% in 10 years lequivalent to a "return period" of 100 yearst.

Typical teack directions

VOLCANCES

- Last eruption before 1800 AD
- Last eruption after 1800 AG
- A Particularly hazardous volcances.

TSUNAMIS AND STORM SURGES

- Trumani hazard (priomic sna wave) - Bhorre surge hunard ~ Taunami and sthim surge hazard

ICEBERG DRIFTS

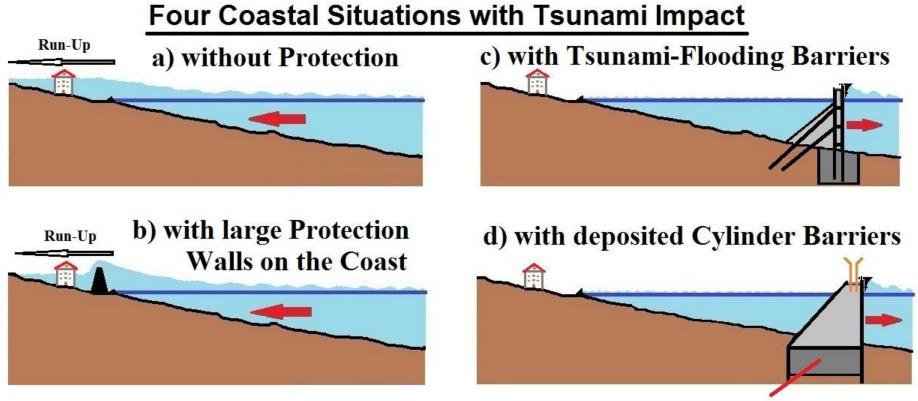
A & A & Esterit of observed iceberg drifts

CLIMATE IMPACTS

Main impacts of climate change already observed mil/or expected to immune in the future.

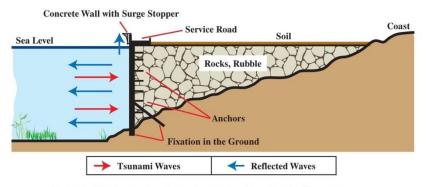
- [4] Charige in trapical syclose activity.
- intensification of estratropical storms
- TE Increase in Newy saint
- 1 Increase in lientweens
- 19" Increase in droughts
- An Threat of sea level rise
- Fernalizet thew
- 1 improved agricultural conditions
- · Untercomble agricutural conditions

POLITICAL BORDERS

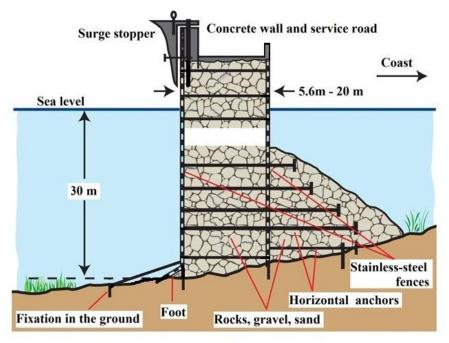

--- State border - State border unitraversial (political borders not binding)

CITIES

- Danner >1 million inhabitants
 San uun 100,000 to 1 million onhabitanta
- Mauni <100.000 =habitante
- as + Both Copital city

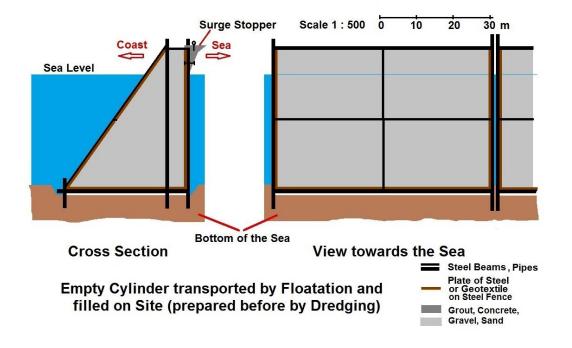

Date testurces

Bathymetry: Amante, C. and R. W. Eaklins, ETOPOLLAn: Winuts Stobal Ratial Model: Procedures, Data Sooman and Analysis, National Gamphysical Data Caritas, NEISCHR, NOAA, U.S. Department of Commands, Bruildet CD, August 2008; Estratingical atumes (NM) (Regal hatherizade Muteurological testinatar, Tampura-tiani, Precipitation 1878-2007. Climatic Nermarch Unit, United by of East Anglia, Norwich,




Concrete Foundation

Tsunami Impulse WavesReach the Coastare Reflected before Reaching the Coast



Schematic cross section of a vertical barrier in the sea which reflects the tsunami impulse waves. The gap between barrier and coast is filled up for land reclamation.

Schematic view of a truck on a double-pontoon simultaneously inserting two steel fences from fence rolls into the sea Double-fence tsunami-flooding barrier with concrete road, walls and surge stopper, schematic cross section

Dredging/cleaning of the sea floor and supply of sand/gravel to fill the cylinder barrier (Van Oord Ship)

Heights of Tsunami Waves

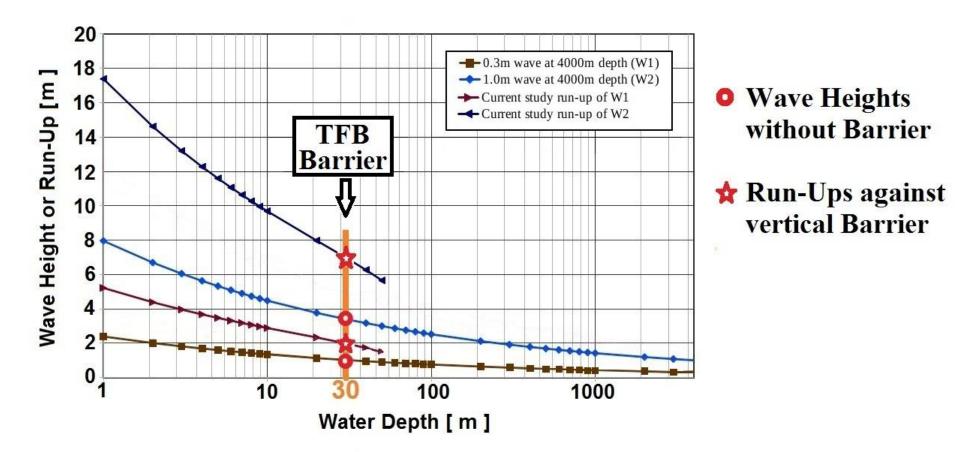
Speed of Tsunami Wave

$$\boldsymbol{c} = \sqrt{(\boldsymbol{g} \boldsymbol{x} \boldsymbol{h})}$$

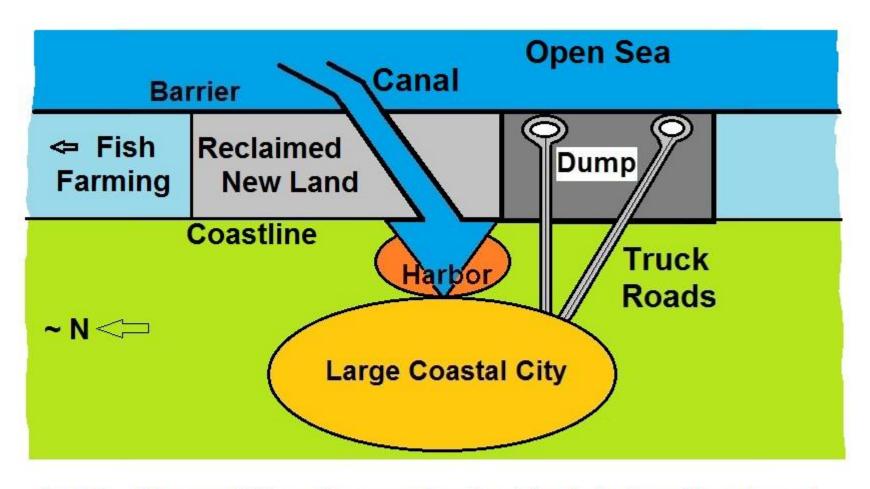
g = Gravitational Acceleration *h* = Depth of Sea

Height (Amplitude A) of Tsunami Wave

$$A^2 x c = constant$$


(Energy Conservation)

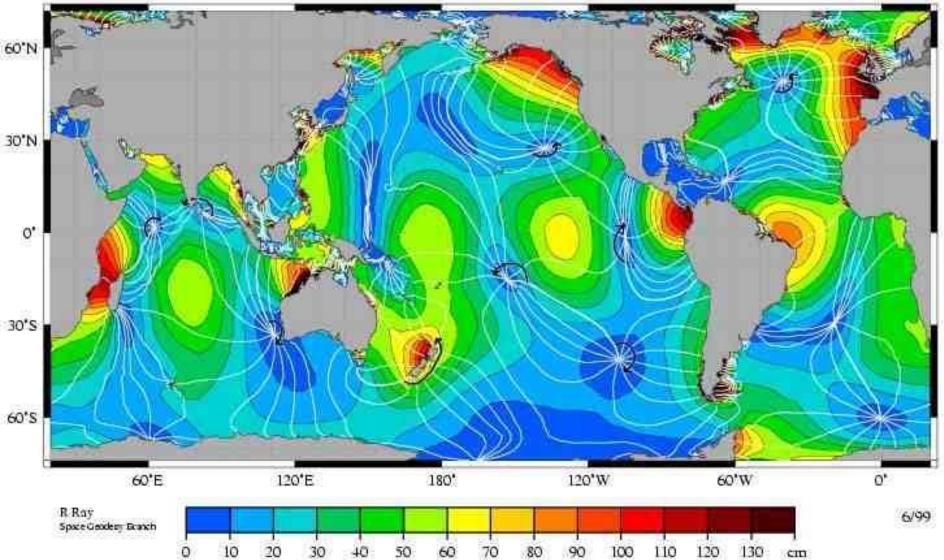
Tsunami Wave Heights and Wave Velocities

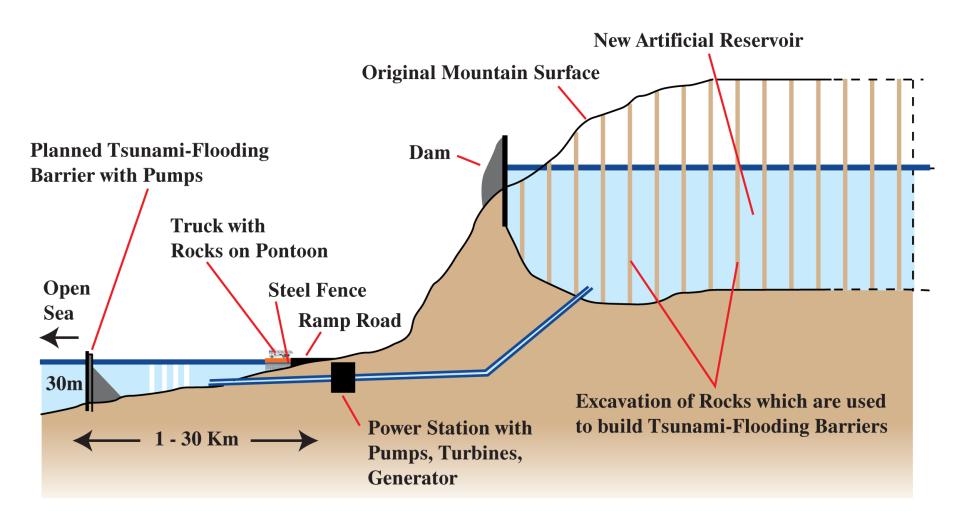

(for original Tsunami Speed of 713km/hour at Ocean Depth of 4000m)

Depth	Speed (Km/h)	Wave	Height
4000m	713	0.3m*	0.90m*
200m	160	0.63m	1.90m
40m	71	0.95m	2.85m
30m	62	1.02m	3.05m
20m	50	1.13m	3.39m

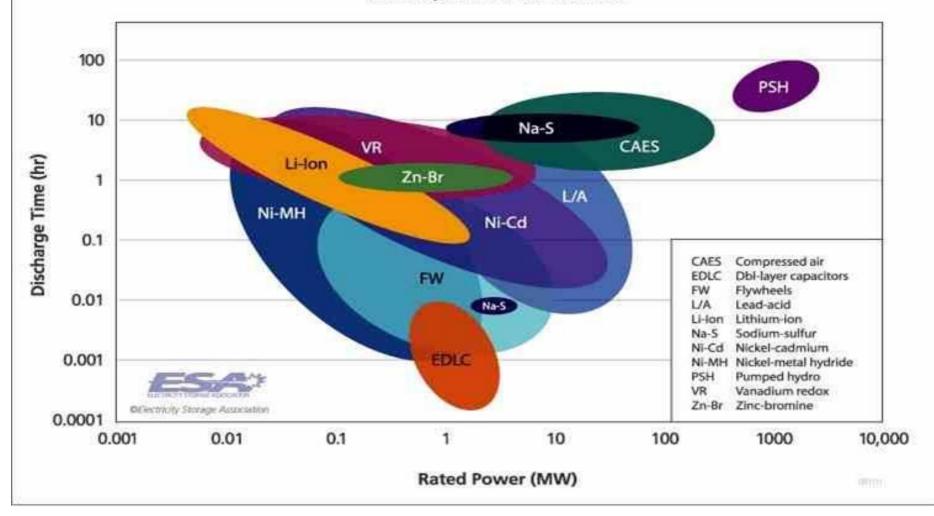
*Assumed typical values

The height of an arriving Tsunami Wave is about doubled when stopped by a stable vertical Barrier




Applications of Sea Reservoirs for Reclaiming New Land, for Fish Farming and, after Drainage, as Dump for Waste Disposal followed by Fill-up for more New Land, Top View

Tidal Height Differences



Hydroelectric Energy Storage by Pumping Sea-Water to the Artificial Resrvoir which is formed by Excavating Rocks for the Construction of Tsunami-Flooding Barriers (Schematic Cross Section)

System Ratings

Installed systems as of November 2008

Humanity's Top Ten Problems for next 50 years

According to Richard Smalley Nobel Prize for Chemistry 1964 Smalley 2003

- ENERGY
- WATER
- FOOD
- ENVIRONMENT
- POVERTY
- TERRORISM & WAR
- DISEASE
- EDUCATION
- POPULATION
- DEMOCRACY

2004	6.5	Billion People
2050	~ 10	Billion People

学位記 スイズ くりん ツーう 西晋元三七年 五月 ナニョりま 本学に博士論支を提出し 所定の審査に合格したので 停士(エ 学)の学位を授与 Ņ IT that 北大学 王第一五九二子 water and the state of the stat

Tohoku University Sendui Iupan

In an and and an tank a start and

This is to certify that

Hans J. Scheel

of Switzerland

born on May 13,1937

has been duly awarded the Degree of

Doctor of Engineering

having passed the prescribed examination

くちんちんちんでい れっちん ひろんとうていたかい

いのうちょうないないないないのののとうなん

on his thesis for the doctorate

in Tohoku University.

Warch 15, 1995

all a fait of the fait of the fait of the

Jun-ichi Nolizena

いいていていていていましていいいいいいいい

President,

Tohoku University

АКАДЕМИЯ ИНЖЕНЕРНЫХ НАУК

Российской Федерации

На основании Устава АКАДЕМИИ ИНЖЕНЕРНЫХ НАУК Российской Федерации

ИЗБРАЛА

Xanca Uleers

ИНОСТРАННЫМ ЧЛЕНОМ Академии инженерных наук Российской Федерации

16 max 1996 2.

RPESKDEHT

CEKPETAPL капемии инженерных наук Российской Федерации

ТЛАВНЫЙ УЧЕНЫЙ

Москва, Россия

АКАДЕМИЯ ИНЖЕНЕРНЫХ НАУК

OF TEPALIN POCCUMCKOW

	тел	333-14-00
117810 ГСП-7 Москва В-485 Ул. Поресоюзная, 84/32	+akc	333-50-88
<u>ЛЦН</u> н		
Ha N		
	~	

Dear Dr.-Ing. H.J.Scheel,

We have a pleasure to congratulate you with your election as a foreign member of Academy of Engineering Sciences of Russian Federation.

We appreciate your valuable contributions in the development of materials engineering and technology and hope you will introduce in the engineering sciences further new important contributions.

With all good wishes in your future work and teaching.

President

A.M. Prokhorov

Chief Scientific Secretary

I.A. Shcherbakov

